
zspace.com Developer’s Guide
 Rev 1.1

zSpace Developer
Native Programming Guide
Version 1.0

zSpace Developer Native Programming Guide i

Before You Begin
This zSpace Developer Native Programming Guide describes how to program features using the zSpace™
software development kit (SDK).

Audience

This document is intended for developers who have built 3D applications and have a basic
understanding of the principles associated with 3D programming for zSpace applications.

Scope

This document covers basic installation and then explores the SDK components and features.

Document Organization

This document is divided into five main sections:

• Buffer Allocation and Stereo Rendering

• Initializing and Integrating

• Frustum Attributes

• Coordinate Spaces

• Tracking

Related Documents

For more information about developing zSpace applications, refer to the following sources:

• zSpace developer resources at http://developer.zspace.com/

• zSpace developer documents at http://developer.zspace.com/docs/ specifically:

o The zSpace Developer Guide – SDK Introduction provides an overview of how to build and
port applications for the zSpace™ platform.

o The zSpace Developer Unity 3D Programming Guide describes how to program features
using the zSpace plugin for Unity 3D.

Copyright © zSpace, Inc. 2016. zSpace is a registered trademark of zSpace, Inc. All other trademarks
are the property of their respective owners.

http://developer.zspace.com/
http://developer.zspace.com/docs/

zSpace Developer Native Programming Guide ii

Contents
1: Introduction and Installation ... 1

Setup Basics and Directories .. 1
2: Buffer Allocation and Stereo Rendering ... 2

Buffer Allocation .. 2
OpenGL .. 2
DirectX ... 3

Stereo Rendering ... 5
Render Loop ... 5
Stereo Render Loop ... 6

3: Initializing and Integrating ... 7
zSpace Context ... 7
Version and Errors.. 7
Display .. 8
Stereo Objects .. 10

Stereo Buffer.. 10
Viewport .. 11
Frustum .. 11

Tracking Basics ... 13
zSpace Stereo Loop .. 14
Grabbing Things with the Stylus .. 16
Cleaning Up .. 18

4: Frustum Attributes .. 19
Frustum Adjustments ... 19
Frustum Attributes ... 20
Auto Stereo .. 21
Portal Mode ... 22
Stereo Comfort... 23
Focal Point and Zero Parallax ... 24
Head Pose .. 25

5: Coordinate Spaces ... 26

6: Tracking .. 27
Tracker Devices .. 27
Tracker Targets... 28
Buttons ... 30
LED ... 30

zSpace Developer Native Programming Guide iii

Vibration... 31
Tap .. 31
Event Handlers ... 32
Mouse Emulation ... 33

zSpace Developer Native Programming Guide 1

1: Introduction and Installation
Building or porting an application to the zSpace platform has two distinct parts. First, the application
must be stereo enabled and use the zSpace stereo values to generate correct head tracked images.
Second, the application needs to get stylus information into a coordinate system. After those two
essentials are established, other aspects of the zSpace platform can be developed to create unique
experiences, including viewer scaling, stylus vibration, and mouse emulation.

Setup Basics and Directories
When you download and install the zSpace SDK from http://developer.zspace.com/downloads, a
number of directories are installed in C:/zSpace/SDKs/[build#]/:

• The Inc directory contains the header files used by the zSpace system.

• The Lib directory contains the libraries needed for the supported architecture.

• The Media directory contains the default zSpace icon.

• The Samples directory contains the sample programs that show how to use various features of
the SDK. These samples are used throughout this document, as code references and complete
samples, which demonstrate how to use zSpace features.

The zSpace SDK currently supports programming in C. Additional language bindings for the zSpace SDK
are planned for the future, along with full documentation.

The zSpace Samples directory includes a text file called CMakeLists.txt. Cmake is the tool used to create
Visual Studio project and solution files for the zSpace samples. Visual Studio 2008 or a newer version is
required to build zSpace applications. For convenience, the Samples/Prebuilt directory contains
executables for all the samples. Developers can execute these prebuilt samples rather than building
them from Visual Studio.

http://developer.zspace.com/downloads

zSpace Developer Native Programming Guide 2

2: Buffer Allocation and Stereo
Rendering

Buffer Allocation
The zSpace stereo uses a quad buffer time sequential stereo mechanism. This mode of stereo requires
coordination with the GPU to allocate and render into appropriate buffers. This section describes how to
allocate the buffers for OpenGL and DirectX, and how to modify the normal rendering loop to render
into stereo buffers. OpenGL is a cross-language, cross-platform API for rendering 2D and 3D graphics.
DirectX is an API for creating and managing graphic images and multimedia effects.

OpenGL

The method for stereo buffer allocation in OpenGL is simple. On Windows, OpenGL applications allocate
driver resources by using the SetPixelFormat Windows function. Existing OpenGL applications already
call this function to allocate resources for the back buffer, stencil buffer, and depth buffer. To allocate
the stereo buffers, simply add the PFD_STEREO flag to the PIXELFORMATDESCRIPTOR flags field.

For example, if the current PIXELFORMATDESCRIPTOR declaration looks like this.

PIXELFORMATDESCRIPTOR pfd =
{
 sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
 1, // Version Number
 PFD_DRAW_TO_WINDOW | // Format Must Support Windows
 PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
 PFD_DOUBLEBUFFER, // Must Support Double Buffering
 PFD_TYPE_RGBA, // Request an RGBA Format
 24, // 24-bit color depth
 0, 0, 0, 0, 0, 0, // Color Bits Ignored
 0, // No Alpha Buffer
 0, // Shift Bit Ignored
 0, // No Accumulation Buffer
 0, 0, 0, 0, // Accumulation Bits Ignored
 32, // 32-bit Z-Buffer (Depth Buffer)
 0, // No Stencil Buffer
 0, // No Auxiliary Buffer
 PFD_MAIN_PLANE, // Main Drawing Layer
 0, // Reserved
 0, 0, 0 // Layer Masks Ignored
};

 Buffer Allocation and Stereo Rendering

zSpace Developer Native Programming Guide 3

The new declaration to allocate quad-buffer stereo looks like this.

PIXELFORMATDESCRIPTOR pfd =
{
 sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
 1, // Version Number
 PFD_DRAW_TO_WINDOW | // Format Must Support Windows
 PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
 PFD_STEREO | // Format Must Support Quad-buffer Stereo
 PFD_DOUBLEBUFFER, // Must Support Double Buffering
 PFD_TYPE_RGBA, // Request an RGBA Format
 24, // 24-bit color depth
 0, 0, 0, 0, 0, 0, // Color Bits Ignored
 0, // No Alpha Buffer
 0, // Shift Bit Ignored
 0, // No Accumulation Buffer
 0, 0, 0, 0, // Accumulation Bits Ignored
 32, // 32-bit Z-Buffer (Depth Buffer)
 0, // No Stencil Buffer
 0, // No Auxiliary Buffer
 PFD_MAIN_PLANE, // Main Drawing Layer
 0, // Reserved
 0, 0, 0 // Layer Masks Ignored
};

That is all you need to do to let the driver know that quad buffered stereo is requested.

DirectX

DirectX recently provided a vendor neutral API for quad buffered stereo support in version 11.1. It is
possible to set up quad buffered stereo in DirectX 9, 10, and 11, but this requires functions specific to
AMD and nVidia. Please refer to the BasicStereoD3DSample for details about setting up quad buffered
stereo on AMD and nVidia for DirectX 9, 10, and 11.0. The following description applies to DirectX 11.1.

To initialize DirectX, you must create the device and swap chain. There are several steps in this process,
and some changes are needed to ensure quad buffered stereo support. The
BasicStereoD3D11_1Sample shows all of the steps outlined here.

First, make sure stereo is supported by checking the IsWindowedStereoEnabled() function on the
factory interface.

// Create the IDXGIFactory2.
if (FAILED(CreateDXGIFactory1(__uuidof(IDXGIFactory2), (void**)&g_factory)))
{
 return false;
}

// Check if stereo is enabled.
if (!g_factory->IsWindowedStereoEnabled())
{
 return false;
}

The device created with the adapter from this factory supports quad buffered stereo.

 Buffer Allocation and Stereo Rendering

zSpace Developer Native Programming Guide 4

Next, change the swap chain. In the swap chain descriptor, the Stereo flag needs to be set to TRUE. Also,
the SwapEffect needs to be set to DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL.

// Set up the swap chain descriptor.
DXGI_SWAP_CHAIN_DESC1 swapChainDesc = { 0 };
swapChainDesc.Width = 0; // Use automatic sizing
swapChainDesc.Height = 0; // Use automatic sizing
swapChainDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
swapChainDesc.Stereo = TRUE;
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.SampleDesc.Quality = 0;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.BufferCount = 2;
swapChainDesc.Scaling = DXGI_SCALING_NONE;
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;
swapChainDesc.Flags = 0;

That completes setup for quad buffered stereo allocation.

 Buffer Allocation and Stereo Rendering

zSpace Developer Native Programming Guide 5

Stereo Rendering
This section uses OpenGL to show how to render in stereo. DirectX has very similar mechanisms, but
uses different names with a slightly different syntax. For example, OpenGL uses draw buffers to indicate
left or right buffer rendering. DirectX uses RenderTargetView.

A monoscopic application would use a single RenderTargetView for the back buffer. Quad buffered
stereo rendering requires two RenderTargetView instances– one for each buffer. See the
BasicStereoD3D11_1Sample to see how this is implemented in a DirectX application.

Render Loop

Most 3D applications start by setting up all of their rendering resources, and then move into a loop,
which continuously renders the scene until the application exits. For monoscopic OpenGL applications, a
simple render loop might look like this.

bool done = FALSE;
while (done == FALSE)
{
 // Update application state
 update();

 // Set the application window's rendering context as the current rendering context.
 wglMakeCurrent(g_hDC, g_hRC);

 // Clear the scene - color and depth buffers.
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Draw the scene.
 draw();

 // Wwap the back buffer to the front.
 SwapBuffers(g_hDC);
}

For each iteration of the loop the code updates the application state, makes the OpenGL context
current, clears the back buffer, draws the scene, and swaps the back buffer to the front. This continues
until the application exits.

 Buffer Allocation and Stereo Rendering

zSpace Developer Native Programming Guide 6

Stereo Render Loop

For stereo rendering, the scene needs to be rendered twice, once for the left eye and once for the right
eye. The following code shows how to modify the monoscopic rendering loop to support stereo.

There are a couple of things to note in this code. First, the scene is drawn twice, and the draw buffer is
set to the appropriate value depending on which eye is being rendered. Second, the view and projection
matrix values are different for each eye, so they need to be recalculated per frame for each eye.

bool done = FALSE;
while (done == FALSE)
{
 // Update application state
 update();

 // Set the application window's rendering context as the current rendering context.
 wglMakeCurrent(g_hDC, g_hRC);

 // Clear the scene - color and depth buffers.
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Draw the scene for each eye.
 drawSceneForEye(ZC_EYE_LEFT);
 drawSceneForEye(ZC_EYE_RIGHT);

 // Wwap the back buffer to the front.
 SwapBuffers(g_hDC);
}

void drawSceneForEye(ZCEye eye)
{
 // Set the view and projection matrices for the specified eye.
 computeViewMatrix(eye);
 setProjectionMatrix(eye);

 // Set the draw buffer based for the specified eye.
 if (eye == ZC_EYE_LEFT)
 {
 glDrawBuffer(GL_BACK_LEFT);
 }
 else
 {
 glDrawBuffer(GL_BACK_RIGHT);
 }

 // Clear the scene - color and depth buffers.
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Draw a cube.
 drawCube();
}

The following section presents the matrices’ values and what these values represent.

zSpace Developer Native Programming Guide 7

3: Initializing and Integrating
Once the stereo rendering loop has been implemented, you need to integrate the zSpace SDK. This
section discusses initializing and integrating zSpace SDK data into the stereo rendering loop.

zSpace Context
The zSpace runtime associates all of its internal data with a zSpace context. When you initialize the
zSpace runtime system, a zSpace context is returned.

zcInitialize(ZCContext* context);

Many of the objects created and used by the zSpace runtime are associated with the zSpace context.
These objects are represented with a ZCHandle, and the context may be retrieved from the handle with
the following function.

zcGetContext(ZCHandle handle, ZCContext* context);

Version and Errors
The zSpace SDK has an API that gets the current version of the zSpace runtime. This API takes the zSpace
context as a parameter and returns the major, minor, and patch numbers for the current runtime.

ZCError zcGetRuntimeVersion(ZCContext context, ZSInt32* major, ZSInt32* minor, ZSInt32* patch);

All zSpace SDK APIs return an error code value. For brevity, this error return value is omitted from
descriptions in this document. There are many possible errors that can occur when using the SDK. The
error returned by a function can vary based on the specific function. If there is no error, the returned
value is ZC_ERROR_OK. If an error does occur, a string description of the error can be retrieved from the
following function.

zcGetErrorString(ZCError error, char* buffer, ZSInt32 bufferSize);

The parameters for this function are the error, a pointer to a character buffer, and the size of the buffer.

 Initializing and Integrating

zSpace Developer Native Programming Guide 8

Display
Once the context has been created, a zSpace application should find the correct zSpace Display object.
There are several attributes that can be retrieved once you have the Display object. There may be
several displays attached to the system, so there are several ways to get the information for each
display. When zSpace runtime is initialized, the displays are discovered, but the application can
rediscover this information using the following function.

zcRefreshDisplays(ZCContext context);

zSpace runtime can find three types of displays:

• ZC_DISPLAY_TYPE_ZSPACE

• ZC_DISPLAY_TYPE_GENERIC

• ZC_DISPLAY_TYPE_UNKNOWN

All display information can be retrieved for zSpace type displays, but other types of displays may not
return all of the information defined in the zSpace SDK. Several types allow you to iterate over the
discovered displays. The following functions return the number of displays discovered; the second
version only returns the number of displays of the specified type.

zcGetNumDisplays(ZCContext context, ZSInt32* numDisplays);
zcGetNumDisplaysByType(ZCContext context, ZCDisplayType displayType, ZSInt32* numDisplays);

The following function gets the display at the position specified; this position is specified in pixel
coordinates in the virtual desktop.

zcGetDisplay(ZCContext context, ZSInt32 x, ZSInt32 y, ZCHandle* displayHandle);

These functions get the display at the given index. Note that the index specified in the first function is
relative to all displays. The index in the second version of the function is only relative to that type of
display.

zcGetDisplayByIndex(ZCContext context, ZSInt32 index, ZCHandle* displayHandle);
zcGetDisplayByType(ZCContext context, ZCDisplayType displayType, ZSInt32 index, ZCHandle*
displayHandle);

Once you have a display handle, you can retrieve display attributes. The following function gets the
display type.

zcGetDisplayType(ZCHandle displayHandle, ZCDisplayType* displayType);

The following function retrieves the number of the display as defined by the set resolution control panel
window.

zcGetDisplayNumber(ZCHandle displayHandle, ZSInt32* number);

 Initializing and Integrating

zSpace Developer Native Programming Guide 9

The adapter index is the index of the GPU connected to the display.

zcGetDisplayAdapterIndex(ZCHandle displayHandle, ZSInt32* adapterIndex);

The monitor index is the index of the display that is connected to a specific adapter—or GPU. This is
useful if multiple displays are connected to a single GPU.

zcGetDisplayMonitorIndex(ZCHandle displayHandle, ZSInt32* monitorIndex);

Several string attributes, specified by Windows, are retrievable using the following functions.

zcGetDisplayAttributeStrSize(ZCHandle displayHandle, ZCDisplayAttribute attribute, ZSInt32*
size);
zcGetDisplayAttributeStr(ZCHandle displayHandle, ZCDisplayAttribute attribute, char* buffer,
ZSInt32 bufferSize);

The first API gets the size of the attributes string, and the second API gets the string value. Most of these
attributes directly map to values defined by windows.

The ZC_DISPLAY_ATTRIBUTE_MODEL attribute is specific to zSpace. This specifies the model type for
the zSpace display. It can have a value of 100, 200, 300, or Zvr.

The following functions allow applications to get information specific to zSpace displays:

This function retrieves the physical size of the display in meters.

zcGetDisplaySize(ZCHandle displayHandle, ZSFloat* width, ZSFloat* height);

This function retrieves the upper left corner position of the zSpace display in the virtual desktop.

zcGetDisplayPosition(ZCHandle displayHandle, ZSInt32* x, ZSInt32* y);

This function retrieves the pixel resolution of the zSpace display.

zcGetDisplayNativeResolution(ZCHandle displayHandle, ZSInt32* x, ZSInt32* y);

The following function returns the current display angle of the zSpace display. The display angle is
measured in degrees from a horizontal flat position. Note that except on the zSpace 100, this value is
dynamic and can change. Applications that need this information must retrieve it for every rendered
frame.

zcGetDisplayAngle(ZCHandle displayHandle, ZSFloat* x, ZSFloat* y, ZSFloat* z);

The following function returns the refresh rate of the display.

zcGetDisplayVerticalRefreshRate(ZCHandle displayHandle, ZSFloat* refreshRate);

The following function shows whether the display is currently connected to the system.

zcIsDisplayHardwarePresent(ZCHandle displayHandle, ZSBool* isHardwarePresent);

 Initializing and Integrating

zSpace Developer Native Programming Guide 10

Another common feature that applications need is to determine is the intersection point where a virtual
ray starting at the end of the stylus would intersect with the display. The following function takes all of
the zSpace display attributes into account and calculates that intersection point.

zcIntersectDisplay(ZCHandle displayHandle, const ZCTrackerPose* pose, ZCDisplayIntersectionInfo*
intersectionInfo);

The pose information is in tracker space, and can be retrieved directly from the tracker system. More
detail is provided in the documentation for zcCreateStereoBuffer, which is available online at
http://developer.zspace.com/. The information returned shows whether or not the display was hit, the
normalized and unnormalized pixel coordinates in the virtual desktop where the intersection occurred,
and the distance (in meters) from the end of the stylus to the intersection point.

Stereo Objects
When you have a display handle, you can create the other objects needed for zSpace stereo
calculations. Those objects include the stereo buffer, the viewport, and the frustum. zSpace does not do
any stereo rendering. It simply provides data to the application to implement its own stereo rendering.
These objects help manage the data calculated by the zSpace SDK.

Stereo Buffer

The stereo buffer represents the buffer where stereo rendering occurs. While zSpace does no scene
rendering, there is one case in which zSpace needs to render information to synchronize the left and
right eye buffers. The stereo buffer objects encapsulate this functionality. The following APIs are used to
create and destroy the stereo buffer object.

zcCreateStereoBuffer(ZCContext context, ZCRenderer renderer, void* reserved, ZCHandle*
bufferHandle);
zcDestroyStereoBuffer(ZCHandle bufferHandle);

The ZCRenderer parameter specifies the rendering API to use. It can be one of: OpenGL, DirectX 9, 10,
11, or 11.1. The reserved parameter is used when the application would like zSpace to use its own
window for left/right eye synchronization. See the documents bundled with the SDK for the acceptable
values of the reserved parameter.

To run in fullscreen mode, the application must notify zSpace with the following function.

zcSetStereoBufferFullScreen(ZCHandle bufferHandle, ZSBool isFullScreen);

Use the next API to query whether or not the application is in fullscreen mode according to zSpace.

zcIsStereoBufferFullScreen(ZCHandle bufferHandle, ZSBool* isFullScreen);

http://developer.zspace.com/

 Initializing and Integrating

zSpace Developer Native Programming Guide 11

At the beginning of every frame, before any rendering has occurred, the application needs to call the
following function.

zcBeginStereoBufferFrame(ZCHandle bufferHandle);

The zSpace runtime system uses the previous function to continually ensure that left and right eye
buffers are synchronized with the display.

An application can manually force synchronization with the following function.

zcSyncStereoBuffer(ZCHandle bufferHandle);

Once a stereo buffer object is created, a viewport may be defined.

Viewport

The viewport object defines a window on the zSpace display where stereo rendering occurs. As with
other zSpace objects, the viewport does no rendering, it just serves as a data container to make sure
calculations are correct. An application may define as many viewports as it likes, but it needs to make
sure it uses the appropriate data when rendering to each viewport.

The following functions create and destroy the viewport.

zcCreateViewport(ZCContext context, ZCHandle* viewportHandle);
zcDestroyViewport(ZCHandle viewportHandle);

The only other functions needed for the viewport are to set and get the viewport position and size. They
are as follows.

zcSetViewportPosition(ZCHandle viewportHandle, ZSInt32 x, ZSInt32 y);
zcGetViewportPosition(ZCHandle viewportHandle, ZSInt32* x, ZSInt32* y);
zcSetViewportSize(ZCHandle viewportHandle, ZSInt32 width, ZSInt32 height);
zcGetViewportSize(ZCHandle viewportHandle, ZSInt32* width, ZSInt32* height);

The application needs to make sure the rendering window and viewport position and size remain in
sync. Otherwise, rendering is not correct.

Frustum

The frustum is an object which is associated with the viewport. It represents the stereo frustum defined
by the current head position, the position and orientation of the zSpace display, and the position and
size of the viewport. There are many attributes that can be modified in the stereo frustum. Those
attributes are shown in the frustum adjustments in the following paragraphs. This section presents the
basics of the frustum and how to integrate it into an application with all of the default attribute values.

 Initializing and Integrating

zSpace Developer Native Programming Guide 12

The frustum object is automatically created and destroyed with the viewport object. To get the frustum
object, the application uses the following function.

zcGetFrustum(ZCHandle viewportHandle, ZCHandle* frustumHandle);

By default, the zSpace runtime automatically reads the head pose and apply it to all known frustums. If
tracking is disabled, the application can manually set and get the head pose used by the frustum to
calculate stereo transforms and projections. The following functions are sometimes used to simulate
head tracking while debugging.

zcSetFrustumHeadPose(ZCHandle frustumHandle, const ZCTrackerPose* headPose);
zcGetFrustumHeadPose(ZCHandle frustumHandle, ZCTrackerPose* headPose);

There are two transforms that zSpace calculates which need to be integrated into the rendering
transforms. Both transforms are unique to each eye, so they need to be applied appropriately when
rendering for an eye.

zSpace takes the head pose, which represents the position and orientation of the center of the glasses,
and calculates the two transforms appropriate for the stereo frustum. The view matrix transform
represents the relative transform, which combines the interpupillary distance, offset from the glasses to
the eye, and the transform from camera space to display space. The view transform is retrieved with the
following function.

zcGetFrustumViewMatrix(ZCHandle frustumHandle, ZCEye eye, ZSMatrix4* viewMatrix);

This matrix needs to be concatenated with the applications camera matrix when preparing to render the
scene for the appropriate eye. There are many ways that applications represent their camera
transformations, so applying this transform is unique to every application. For example,
StereoFrustumSample, uses the OpenGL Mathematics (GLM) library for math calculations. In that case,
the view matrix is concatenated with the camera matrix in the following code.

g_cameraTransform = glm::lookAt(eye, origin, up);
ZSError error = zcGetFrustumViewMatrix(g_frustumHandle, eye, &viewMatrix);

glm::mat4 zsViewMatrix = glm::make_mat4(viewMatrix.f);
g_viewMatrix = zsViewMatrix * g_cameraTransform;

With the view matrix processed, you need to process the second transform which is a projection matrix.
Use the following function to get the projection matrix.

zcGetFrustumProjectionMatrix(ZCHandle frustumHandle, ZCEye eye, ZSMatrix4* projectionMatrix);

The projection matrix encodes an off axis projection into a matrix. The matrix in this function is an
OpenGL style projection matrix. If you are using OpenGL, this projection matrix is compatible with the
standard definition of an OpenGL projection, so it may be passed directly to OpenGL. For other
rendering systems, the two following functions retrieve the off-axis projection information.

zcGetFrustumBounds(ZCHandle frustumHandle, ZCEye eye, ZCFrustumBounds* bounds);
zcGetFrustumEyePosition(ZCHandle frustumHandle, ZCEye eye, ZCCoordinateSpace coordinateSpace,
ZSVector3* eyePosition);

 Initializing and Integrating

zSpace Developer Native Programming Guide 13

The first function returns the frustum bounds information as the standard six bounds values: left, right,
top, bottom, near, and far. These values can be used with appropriate rendering APIs such as
glFrustum() in OpenGL or D3DXMatrixPerspectiveOffCenterLH() in DirectX.

The second function enables the application to retrieve the left or right eye position in any coordinate
system they like. A good example of using this function is for real time ray tracing applications. By
getting the eye position in viewport space, and using the viewport position and size, the application can
construct the appropriate starting ray for the rendering.

With these functions integrated into the application, the stereo should now be working correctly. Note
that all values in zSpace are real world measurements where 1.0 is one meter. If the application has
modeled objects at the real world scale, stereo rendering displays correctly.

If a different modeling scale was used, a scaling parameter may be changed. That is covered in Frustum
Attributes – particularly the ZC_FRUSTUM_ATTRIBUTE_VIEWER_SCALE attribute on page 20. The next
section describes tracking system integration.

Tracking Basics
When the zSpace runtime is initialized, the tracking system is also initialized. And, by default, the head
pose is automatically read and applied to all known frustums. This is done when the application calls the
following function.

zcUpdate(ZCContext context);

Call this function once for each rendering iteration. It caches the tracking data and applies head tracking.

For basic applications, processing the stylus is relatively simple. First, the application must get the
tracking target associated with the stylus with the following function.

zcGetTargetByType(ZCContext context, ZCTargetType targetType, ZSInt32 index, ZCHandle*
targetHandle);

For the stylus, the target type is ZC_TARGET_TYPE_PRIMARY and the index is 0. Once the stylus target is
acquired, once per frame, the application needs to get the current stylus pose and transform it into a
coordinate system appropriate for application use. To get the current stylus pose, use the following
function.

zcGetTargetTransformedPose(ZCHandle targetHandle, ZCHandle viewportHandle, ZCCoordinateSpace
coordinateSpace, ZCTrackerPose* pose);

This returns the current stylus pose in the requested coordinate system. Note that since some
coordinate systems are dependent on the viewport, a viewport handle is required. This also means that
applications that wish to use the stylus in multiple viewports need to get the pose as appropriate for
each viewport.

 Initializing and Integrating

zSpace Developer Native Programming Guide 14

Camera space is the common coordinate system between zSpace and applications. Once the pose is
retrieved in camera space, the application may want to transform it to world space.

Depending on how applications represent the camera to world space transforms, this may be different
for each application. With StereoFrustumSample, again using GLM, our transform looks like this.

// Grab the stylus pose (position and orientation) in camera space.
ZCTrackerPose stylusPose;
error = zcGetTargetTransformedPose(g_stylusHandle, g_viewportHandle, ZC_COORDINATE_SPACE_CAMERA,
&stylusPose);

// Transform the pose to world space.
glm::mat4 stylusPoseCamera = glm::make_mat4(stylusPose.matrix.f);
g_stylusWorldPose = g_invCameraTransform * stylusPoseCamera;

That completes all the calls needed to start a zSpace application.

zSpace Stereo Loop
To structure a typical zSpace stereo loop, first initialize all of the zSpace objects when the application is
initialized. This is taken directly from StereoFrustumSample.

 ZCError error;
 // Initialize the zSpace SDK. This MUST be called before
 // calling any other zSpace API.
 error = zcInitialize(&g_zSpaceContext);

 // Create a stereo buffer to handle L/R detection.
 error = zcCreateStereoBuffer(g_zSpaceContext, ZC_RENDERER_QUAD_BUFFER_GL, 0, &g_bufferHandle);

 // Create a zSpace viewport object and grab its associated frustum.
 error = zcCreateViewport(g_zSpaceContext, &g_viewportHandle);

 error = zcGetFrustum(g_viewportHandle, &g_frustumHandle);

 // Grab a handle to the stylus target.
 error = zcGetTargetByType(g_zSpaceContext, ZC_TARGET_TYPE_PRIMARY, 0, &g_stylusHandle);

 // Find the zSpace display and set the window's position
 // to be the top left corner of the zSpace display.
 error = zcGetDisplayByType(g_zSpaceContext, ZC_DISPLAY_TYPE_ZSPACE, 0, &g_displayHandle);

 error = zcGetDisplayPosition(g_displayHandle, &g_windowX, &g_windowY);

This creates all of the necessary zSpace objects that are used in the render loop.

 Initializing and Integrating

zSpace Developer Native Programming Guide 15

If you look back at the code presented in the Stereo Render Loop section, there were a number of
functions that were undefined. These are defined here to show the zSpace calls required in the actual
render loop. First is the update() function.

// Update the camera.
updateCamera();

// Update the zSpace viewport position and size based
// on the position and size of the application window.
error = zcSetViewportPosition(g_viewportHandle, g_windowX, g_windowY);

error = zcSetViewportSize(g_viewportHandle, g_windowWidth / 2, g_windowHeight);

// Update the OpenGL viewport size;
glViewport(0, 0, g_windowWidth / 2, g_windowHeight);

// Update the zSpace SDK. This updates both tracking information
// as well as the head poses for any frustums that have been created.
error = zcUpdate(g_zSpaceContext);

// Grab the stylus pose (position and orientation) in cameraspace.
ZCTrackerPose stylusPose;
error = zcGetTargetTransformedPose(g_stylusHandle, g_viewportHandle, ZC_COORDINATE_SPACE_CAMERA,
&stylusPose);

// Transform the pose to world space.
glm::mat4 stylusPoseCamera = glm::make_mat4(stylusPose.matrix.f);
g_stylusWorldPose = g_invCameraTransform * stylusPoseCamera;

This function starts by calling updateCamera(), which updates any camera transforms as defined by the
application. Then, update the zSpace viewport object and OpenGL for any window size or position
changes. Next, call zcUpdate() to enable zSpace runtime to update tracking information and frustums.
Finally, calculate the stylus world pose as seen in the last section. The other two undefined functions
related to zSpace are computeViewMatrix() and setProjectionMatrix().

bool computeViewMatrix(ZCEye eye)
{
 // Get the view matrix from the zSpace StereoFrustum for the specified eye.
 ZCMatrix4 viewMatrix;
 ZCError error = zcGetFrustumViewMatrix(g_frustumHandle, eye, &viewMatrix);
 CHECK_ERROR(error);

 glm::mat4 zcViewMatrix = glm::make_mat4(viewMatrix.f);
 g_viewMatrix = zcViewMatrix * g_cameraTransform;
 return true;
}

 Initializing and Integrating

zSpace Developer Native Programming Guide 16

This function gets the view matrix from zSpace and multiplies it by the existing camera transform. This
composite transform can now be used to compute the model view matrix for each object to be
rendered.

bool setProjectionMatrix(ZCEye eye)
{
 // Get the projection matrix from the zSpace StereoFrustum for a specified eye.
 ZSMatrix4 projectionMatrix;
 ZCError error = zcGetFrustumProjectionMatrix(g_frustumHandle, eye, &projectionMatrix);
 CHECK_ERROR(error);

 // Convert the projection matrix to glm, and pass down to the shader.
 glm::mat4 zcProjMatrix = glm::make_mat4(projectionMatrix.f);
 glUniformMatrix4fv(g_projectionUniform, 1, GL_FALSE, glm::value_ptr(zcProjMatrix));
 return true;
}

This function gets the projection matrix and passes it along to OpenGL.

Grabbing Things with the Stylus
One of the most common stylus features is picking up objects and manipulating them with the stylus.
StereoFrustumSample shows an implementation of this feature, and its logic is presented here.

The first step is to determine the objects that intersect with the virtual ray in the scene. To construct this
ray, use the following function.

glm::vec3 stylusPosition = glm::vec3(g_stylusWorldPose[3][0], g_stylusWorldPose[3][1],
g_stylusWorldPose[3][2]);
glm::vec3 stylusDirection = glm::normalize(glm::vec3(-g_stylusWorldPose[2][0], -
g_stylusWorldPose[2][1], -g_stylusWorldPose[2][2]));

The stylus position is the fourth column of the world pose. The ray direction is the normalized negative Z
axis of the pose, which is the third column.

 Initializing and Integrating

zSpace Developer Native Programming Guide 17

The determination of the object hit by this ray is application dependent. The sample checks the
intersection of the ray with all of the cubes using the checkCubeIntersections() function. The first hit is
returned. Once you find the object that intersects, and are going to drag it, compute information to
process the drag correctly.

// This code figures out the beginning offset from the end
// of the virtual stylus to the center of the grabbed cube.
// It also computes the starting cumulative rotation of the stylus
// and the grabbed cube. These will be used to compute the correct
// modelview transform of the object while it is dragged.
glm::quat quat = glm::quat_cast(glm::mat3(g_cubes[g_currentCubeHit].modelView));
quat = glm::inverse(quat);
glm::mat4 matrix = glm::mat4_cast(quat);

glm::vec4 cubePosition = g_cubes[g_currentCubeHit].modelView * glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
glm::vec4 stylusEnd = glm::vec4((stylusPosition + (stylusDirection * g_stylusLength)), 1.0f);

glm::vec4 offset = cubePosition - stylusEnd;
g_startOffset = matrix * offset;

glm::quat rotation = glm::quat_cast(glm::mat3(g_stylusWorldPose));
rotation = glm::inverse(rotation);
g_startRotation = rotation * glm::quat_cast(glm::mat3(g_cubes[g_currentCubeHit].modelView));

The first section computes the world rotation for the cube that was hit. Then compute the current offset
from the end of the stylus to the end of the cube. This is the g_startOffset variable. Maintain this offset
as the stylus moves. Also, cache the cumulative rotation of the stylus and the cube. This is the
g_startRotation variable. This is the starting rotation to use when adding new stylus rotations. Once the
object is grabbed, update its model view transform as it is moved and rotated.

Use the following code to set the new model view matrix to be the rotation.

glm::mat4 matrix = glm::mat4_cast(newRotation);

Then set the individual position elements directly using this code.

matrix[3][0] = newOffset.x;
matrix[3][1] = newOffset.y;
matrix[3][2] = newOffset.z;

glm::vec4 stylusEnd = glm::vec4((stylusPosition + (stylusDirection * g_stylusLength)), 1.0f);
glm::quat rotation = glm::quat_cast(glm::mat3(g_stylusWorldPose));
glm::quat newRotation = rotation * g_startRotation;

glm::mat4 matrix = glm::mat4_cast(newRotation);
glm::vec4 offset = matrix * g_startOffset;

 Initializing and Integrating

zSpace Developer Native Programming Guide 18

Finally, set the individual position elements directly with the following code.

// Set the modelview matrix to be the new rotation and offset as calculated above.
glm::vec3 newOffset = glm::vec3(offset + stylusEnd);
matrix[3][0] = newOffset.x;
matrix[3][1] = newOffset.y;
matrix[3][2] = newOffset.z;
g_cubes[g_draggingCube].modelView = matrix;

The new rotation for the object is simply the rotation of the current stylus added onto the starting
rotation. The new position is the starting offset transformed by the new rotation, and then added to the
current end of the stylus. This code and all the logic associated are included in StereoFrustumSample.
Each application may implement this slightly differently depending on the math library and transform
representation, but the overall logic still applies.

Cleaning Up
To shut down the application, make the following call to clean up all zSpace objects.

zcShutDown(ZCContext context);

This shuts down the zSpace runtime and destroys any zSpace objects that were created.

zSpace Developer Native Programming Guide 19

4: Frustum Attributes
Frustum Adjustments
Most applications run well using the basic setup and logic explained previously. But there are many ways
to adjust frustums to make the stereo experience better. This section describes all the attributes that
can be adjusted. For most attributes, use the following get and set functions to set their values.

If the attribute is expecting a floating point value, use this function of the API.

zcSetFrustumAttributeF32(ZCHandle frustumHandle, ZCFrustumAttribute attribute, ZSFloat value);
zcGetFrustumAttributeF32(ZCHandle frustumHandle, ZCFrustumAttribute attribute, ZSFloat* value);
zcSetFrustumAttributeB(ZCHandle frustumHandle, ZCFrustumAttribute attribute, ZSBool value);
zcGetFrustumAttributeB(ZCHandle frustumHandle, ZCFrustumAttribute attribute, ZSBool* value);

If the attribute is expecting a Boolean value, use this function of the API.

zcSetFrustumAttributeB(ZCHandle frustumHandle, ZCFrustumAttribute attribute, ZSBool value);
zcGetFrustumAttributeB(ZCHandle frustumHandle, ZCFrustumAttribute attribute, ZSBool* value);

There is no automatic conversion between value types. If the floating point version of the API is used for
a Boolean attribute, an error occurs. The same is true when using the Boolean API on a floating point
attribute.

The set of attributes that may be retrieved are defined in the ZCFrustumAttribute enum. A description
of each of these attributes follows.

 Frustum Attributes

zSpace Developer Native Programming Guide 20

Frustum Attributes
The following attributes affect the actual shape of the off axis frustums. A visual description of these
attributes can be found in the zSpace Developer Guide – SDK Introduction.

ZC_FRUSTUM_ATTRIBUTE_IPD
The physical separation—or inter-pupillary distance—between the eyes, measured in meters. An IPD of
zero (0) disables stereo since the eyes are at the same location.

ZC_FRUSTUM_ATTRIBUTE_VIEWER_SCALE
Viewer scale adjusts the display and head tracking for larger and smaller scenes. Use larger values for
scenes with large models and smaller values for smaller models.

ZC_FRUSTUM_ATTRIBUTE_HEAD_SCALE
Uniform scale factor applied to the frustum's incoming head pose.

ZC_FRUSTUM_ATTRIBUTE_NEAR_CLIP
Near clipping plane for the frustum, in meters.

ZC_FRUSTUM_ATTRIBUTE_FAR_CLIP
Far clipping plane for the frustum, in meters.

ZC_FRUSTUM_ATTRIBUTE_GLASSES_OFFSET
Distance between the bridge of the glasses and the bridge of the nose, in meters.

The following code shows examples for setting these attributes.

float g_ipd = 0.056f;
float g_viewerScale = 10.0f;
float g_headScale = 1.0f;
zcSetFrustumAttributeF32(g_frustumHandle, ZC_FRUSTUM_ATTRIBUTE_IPD, g_ipd);
zcSetFrustumAttributeF32(g_frustumHandle, ZC_FRUSTUM_ATTRIBUTE_VIEWER_SCALE, g_viewerScale);
zcSetFrustumAttributeF32(g_frustumHandle, ZC_FRUSTUM_ATTRIBUTE_HEAD_SCALE, g_headScale);

 Frustum Attributes

zSpace Developer Native Programming Guide 21

Auto Stereo
The native SDK can track whether or not the glasses are visible. If the glasses are not visible, the runtime
animates from a pair of stereo frustums to a mono frustum. The application does not need to change its
rendering logic. When in mono mode, the left and right frustums are the same, and reflect a single
frustum at the center eye point. When the glasses are again visible, the system animates back to two
stereo frustums.

There are a few attributes that can change the behavior of this feature. The first attribute is the only
Boolean attribute currently in the system.

ZC_FRUSTUM_ATTRIBUTE_AUTO_STEREO_ENABLED
Flag controlling whether the automatic transition from stereo to mono is enabled.

The next two attributes modify the delay and duration of the stereo to mono animation.

ZC_FRUSTUM_ATTRIBUTE_AUTO_STEREO_DELAY
The delay in seconds before the automatic transition from stereo to mono begins.

ZC_FRUSTUM_ATTRIBUTE_AUTO_STEREO_DURATION
The duration in seconds of the automatic transition from stereo to mono.

 Frustum Attributes

zSpace Developer Native Programming Guide 22

Portal Mode
As described in the zSpace Developer Guide – SDK Introduction, zSpace implements a fish tank VR style
system. The viewport is the portal into the virtual world. When the viewport is moved on the display, or
the display angle changes, there are two ways to react to these events. Either move the world with the
viewport or display angle, or keep the virtual world static and move the viewport through the world.
Applications control this behavior by adjusting the portal mode used by the frustum.

zcSetFrustumPortalMode(ZCHandle frustumHandle, ZSInt32 portalModeFlags);
zcGetFrustumPortalMode(ZCHandle frustumHandle, ZSInt32* portalModeFlags);

The following functions are used to adjust the portal mode values. The portal mode flags are a bitmask
representing the portal modes to enable.

ZC_PORTAL_MODE_ANGLE
The scene's orientation is fixed relative to the physical desktop.

ZC_PORTAL_MODE_POSITION
The scene's position is fixed relative to the center of the display.

ZC_PORTAL_MODE_ALL
All portal modes except "none" are enabled.

ZC_PORTAL_MODE_NONE
The scene moves with the viewport and ignores the display angle.

If the portal mode is ZC_PORTAL_MODE_NONE, the application may want to simulate display angle
changes. Set the following frustum attributes to simulate display angle changes:

ZC_FRUSTUM_ATTRIBUTE_DISPLAY_ANGLE_X
ZC_FRUSTUM_ATTRIBUTE_DISPLAY_ANGLE_Y
ZC_FRUSTUM_ATTRIBUTE_DISPLAY_ANGLE_Z
Display angle is in degrees about the X, Y, and Z axis.

The actual system display angle may still be retrieved with zcGetDisplayAngle. The above frustum
display angle values are only used when portal mode is set to ZC_PORTAL_MODE_NONE.

StereoFrustumSample shows how to set different portal modes and the effect on the scene.

 Frustum Attributes

zSpace Developer Native Programming Guide 23

Stereo Comfort
Many factors contribute to a comfortable stereo viewing experience. The document Understanding
zSpace Aesthetics at http://developer.zspace.com/docs/aesthetics/ describes these aspects. It is
important to understand these aspects because they affect the user experience. The document defines
a coupled zone (where stereo is comfortable), a crossed (negative parallax) zone, and an uncrossed
(positive parallax) zone. The limits of these zones, as measured in pixel disparity, can be retrieved as
frustum attributes.

ZC_FRUSTUM_ATTRIBUTE_CC_LIMIT
Maximum pixel disparity for crossed images (negative parallax) in the coupled zone.

ZC_FRUSTUM_ATTRIBUTE_UC_LIMIT
Maximum pixel disparity for uncrossed images (positive parallax) in the coupled zone.

ZC_FRUSTUM_ATTRIBUTE_CU_LIMIT
Maximum pixel disparity for crossed images (negative parallax) in the uncoupled zone.

ZC_FRUSTUM_ATTRIBUTE_UU_LIMIT
Maximum pixel disparity for uncrossed images (positive parallax) in the uncoupled zone.

Applications can also get the physical depth limits for the edges of the coupled zone with these
attributes.

ZC_FRUSTUM_ATTRIBUTE_CC_DEPTH
Maximum depth in meters for negative parallax in the coupled zone.

ZC_FRUSTUM_ATTRIBUTE_UC_DEPTH
Maximum depth in meters for positive parallax in the coupled zone.

There are also two utility functions that allow applications to guide some stereo comfort scenarios.

zcGetFrustumCoupledBoundingBox(ZCHandle frustumHandle, ZCBoundingBox* boundingBox);

This function returns the boundingBox of the coupled zone in a camera space. It can tell the application
where to focus on the scene.

zcCalculateFrustumFit(ZCHandle frustumHandle, const ZCBoundingBox* boundingBox, ZSFloat*
viewerScale, ZSMatrix4* lookAtMatrix);

This function takes a boundingBox in world space, then calculates an appropriate viewerScale and
lookAtMatrix to make the stereo viewing experience of that area comfortable.

zcCalculateFrustumDisparity(ZCHandle frustumHandle, const ZSVector3* point, ZSFloat* disparity);

http://developer.zspace.com/docs/aesthetics/

 Frustum Attributes

zSpace Developer Native Programming Guide 24

The last utility function takes a point in camera space and calculates its disparity. Positive disparity
means that it is uncrossed (positive parallax), while negative disparity is crossed (negative parallax). The
application may use this along with the frustum attributes to determine if a point would be in the
coupled zone.

StereoFrustumSample has some debug visualization features that show the extent of the coupled zone,
and how to use the ZC_FRUSTUM_ATTRIBUTE_CC_DEPTH and ZC_FRUSTUM_ATTRIBUTE_UC_DEPTH
attributes.

Focal Point and Zero Parallax
A commonly performed operation for applications is to place an object at the zero parallax plane. The
zero parallax plane is a fixed distance away from the virtual camera defined by the application. This can
be thought of as the focal point. This distance is represented in the zSpace SDK by the camera offset
vector. This vector can be set with the following functions.

zcSetFrustumCameraOffset(ZCHandle frustumHandle, const ZSVector3* cameraOffset);
zcGetFrustumCameraOffset(ZCHandle frustumHandle, ZSVector3* cameraOffset);

The length of the camera offset vector is the distance from the applications virtual camera to the center
of the display/viewport. Since zSpace uses a right-handed coordinate system, the display is in the
direction of the negative Z axis in camera space. Applications can use this value to know how far to place
the virtual camera relative to the center of the display/viewport.

It is possible for the application to modify the camera offset vector, but it is not recommended.

It is also necessary to have objects be coplanar with the display. The easiest way to do this is to define
the coplanar object in the viewport space, and have each frame transform it into the world space before
rendering. The following code shows the process.

viewportLowerLeft = glm::vec4(-0.01, -0.01, 0.0f, 1.0f);
viewportUpperLeft = glm::vec4(-0.01, 0.01, 0.0f, 1.0f);
viewportUpperRight = glm::vec4(0.01, 0.01, 0.0f, 1.0f);
viewportLowerRight = glm::vec4(0.01, -0.01, 0.0f, 1.0f);

ZSMatrix4 vToC;
zcGetCoordinateSpaceTransform(g_viewportHandle, ZC_COORDINATE_SPACE_VIEWPORT,
ZC_COORDINATE_SPACE_CAMERA, &vToC);
glm::mat4 viewportToCamera = glm::make_mat4(vToC.f);
glm::mat4 viewportToWorld = g_invCameraTransform * viewportToCamera;

worldLowerLeft = viewportToWorld * viewportLowerLeft;
worldUpperLeft = viewportToWorld * viewportUpperLeft;
worldLowerRight = viewportToWorld * viewportLowerRight;
worldUpperRight = viewportToWorld * viewportUpperRight;

StereoFrustumSample uses similar code to place the UI boxes at the zero parallax plane, and keeps
them there, no matter where the virtual camera is placed.

 Frustum Attributes

zSpace Developer Native Programming Guide 25

Head Pose
The head pose is one of the most important data points feeding the frustum. But, by default, the
application needs to only call zcUpdate() to have the head pose processed. It is possible to query the
head pose and set a custom head pose for the frustum.

zcSetFrustumHeadPose(ZCHandle frustumHandle, const ZCTrackerPose* headPose);
zcGetFrustumHeadPose(ZCHandle frustumHandle, ZCTrackerPose* headPose);

Getting the head pose can enhance the immersive experience. Processing the head pose is the same as
processing the stylus when using the data for application processing.

The application may also set a custom head pose if desired. For the system to use the applications head
pose, the application must call zcSetFrustumHeadPose after zcUpdate, but before any frustum data is
used for rendering. This overwrites the one set in zcUpdate.

zSpace Developer Native Programming Guide 26

5: Coordinate Spaces
The coordinate spaces used by zSpace are described in the zSpace Developer Guide – SDK Introduction. It
is important to understand these coordinate spaces when building experiences for zSpace. There are
two functions in the SDK used to coordinate space processing: zcGetCoordinateSpaceTransform and
zcTransformMatrix.

Use zcGetCoordinateSpaceTransform to get the coordinate system transform from one space to
another.

zcGetCoordinateSpaceTransform(ZCHandle viewportHandle, ZCCoordinateSpace a, ZCCoordinateSpace b,
ZSMatrix4* transform);

Here is an example of its usage and converting that result for use in GLM—the math library used in
StereoFrustumSample.

zcGetCoordinateSpaceTransform(g_viewportHandle, ZC_COORDINATE_SPACE_VIEWPORT,
ZC_COORDINATE_SPACE_CAMERA, &vToC);
glm::mat4 viewportToCamera = glm::make_mat4(vToC.f);

The zcTransformMatrix uses a right-handed column major format, so it is directly usable with GLM or
OpenGL directly.

zcTransformMatrix(ZCHandle viewportHandle, ZCCoordinateSpace a, ZCCoordinateSpace b, ZSMatrix4*
matrix);

This function can be used to do an in place transform of the given matrix from coordinate space “a” to
coordinate space “b” as shown here.

zcTransformMatrix(g_viewportHandle, ZC_COORDINATE_SPACE_TRACKER, ZC_COORDINATE_SPACE_CAMERA,
&stylusPose.matrix);

This transforms the stylus pose read from the tracking system into the camera space.

zSpace Developer Native Programming Guide 27

6: Tracking
Previous sections described how to get data from the head and stylus tracking targets for basic zSpace
integration. The rest of this document describes more tracking features and APIs that may be used by
the application. This includes more detailed tracker device and target information and exposing all
features available with the stylus.

Tracker Devices
The tracking system defines a number of tracker devices. Each tracker device known by the system can
be iterated by the application using the tracker device functions.

The following functions allow the application to iterate through all tracker devices, or get a particular
named tracker device.

zcGetNumTrackerDevices(ZCContext context, ZSInt32* numDevices);
zcGetTrackerDevice(ZCContext context, ZSInt32 index, ZCHandle* deviceHandle);
zcGetTrackerDeviceByName(ZCContext context, const char* deviceName, ZCHandle* deviceHandle);

The following functions allow an application to enable or disable a tracker device and check if a tracker
device is enabled.

zcSetTrackerDeviceEnabled(ZCHandle deviceHandle, ZSBool isEnabled);
zcIsTrackerDeviceEnabled(ZCHandle deviceHandle, ZSBool* isEnabled);

The following functions allow an application to get the name of a tracker device.

zcGetTrackerDeviceName(ZCHandle deviceHandle, char* buffer, ZSInt32 bufferSize);
zcGetTrackerDeviceNameSize(ZCHandle deviceHandle, ZSInt32* size);

 Tracking

zSpace Developer Native Programming Guide 28

Tracker Targets
Tracker devices have a number of tracker targets associated with them. A tracker target has a type
associated with it as well. The three tracker target types include ZC_TARGET_TYPE_HEAD,
ZC_TARGET_TYPE_PRIMARY, and ZC_TARGET_TYPE_SECONDARY. The head target is the glasses, the
primary target is the stylus, and the secondary target is a secondary six degree of freedom input device.

There are a number of APIs that query or set attributes of tracker targets. If a given tracker target does
not support that attribute or feature, the error ZC_ERROR_CAPABILITY_NOT_FOUND is returned. An
example of this is checking the button state of a head tracker target.

To iterate over tracker targets, the following functions are available.

These get the number of known targets, and the target at the specified index, respectively.

zcGetNumTargets(ZCHandle deviceHandle, ZSInt32* numTargets);
zcGetTarget(ZCHandle deviceHandle, ZSInt32 index, ZCHandle* targetHandle);

These get the number of known targets of the given type, as well as the target of that type at the
specified index.

zcGetNumTargetsByType(ZCContext context, ZCTargetType targetType, ZSInt32* numTargets);
zcGetTargetByType(ZCContext context, ZCTargetType targetType, ZSInt32 index, ZCHandle*
targetHandle);

The following function retrieves the target which has the specified name. There are a few attributes of
the tracker target that may be retrieved.

zcGetTargetByName(ZCHandle deviceHandle, const char* targetName, ZCHandle* targetHandle);

The following function gets the name of the tracker target.

zcGetTargetName(ZCHandle targetHandle, char* buffer, ZSInt32 bufferSize);
zcGetTargetNameSize(ZCHandle targetHandle, ZSInt32* size);

The following functions allow an application to enable or disable a tacker target. The application can also
determine whether or not the target is currently enabled. The third function allows the application to
know if the target is currently visible by the tracking system. Applications may want to do something
unique if a tracker target is not visible. The SDK uses this feature to implement auto stereo with the
head tracker target.

zcSetTargetEnabled(ZCHandle targetHandle, ZSBool isEnabled);
zcIsTargetEnabled(ZCHandle targetHandle, ZSBool* isEnabled);
zcIsTargetVisible(ZCHandle targetHandle, ZSBool* isVisible);

Tracker targets generate poses. A pose includes both the orientation and position of the tracker target.
An application may ask for the current pose of a tracker target at any point in time. Note that zcUpdate

 Tracking

zSpace Developer Native Programming Guide 29

caches the current pose information for all tracker targets, so multiple calls to retrieve the pose all
return the same value.

The application needs to call zcUpdate to get another cached pose.

zcGetTargetPose(ZCHandle targetHandle, ZCTrackerPose* pose);
zcGetTargetTransformedPose(ZCHandle targetHandle, ZCHandle viewportHandle, ZCCoordinateSpace
coordinateSpace, ZCTrackerPose* pose);

The first function to get the pose returns the pose in a tracker space. As a convenience, the second
function may be used to return the pose in the coordinate space requested. Since, transforming poses
into coordinate systems is viewport dependent, the second function requires a viewport. The following
two code snippets are equivalent.

// Using zcGetTargetPose
ZCTrackerPose stylusPose;
zcGetTargetPose(g_stylusHandle, &stylusPose);

// Transform the stylus pose from tracker to camera space.
zcTransformMatrix(g_viewportHandle, ZC_COORDINATE_SPACE_TRACKER, ZC_COORDINATE_SPACE_CAMERA,
&stylusPose.matrix);

// Using zcGetTargetTransformedPose
ZCTrackerPose stylusPose;
zcGetTargetTransformedPose(g_stylusHandle, g_viewportHandle, ZC_COORDINATE_SPACE_CAMERA,
&stylusPose);

Certain operations with the stylus can cause the stylus to change its pose as an operation is occurring;
for example, when you press the button on the stylus. The act of pressing the button slightly changes
the direction of the stylus from where it was when the press started. The zSpace SDK has a feature
called pose buffering which can help alleviate this problem.

When pose buffering is enabled, the runtime system keeps the last N poses for that target, where N is
defined by the capacity of the pose buffer. The application can then get this pose buffer for processing.
The following functions enable or disable pose buffering and check to see if it is enabled.

zcSetTargetPoseBufferingEnabled(ZCHandle targetHandle, ZSBool isPoseBufferingEnabled);
zcIsTargetPoseBufferingEnabled(ZCHandle targetHandle, ZSBool* isPoseBufferingEnabled);

The following functions query the capacity of the pose buffer and allow the capacity to be resized. The
capacity is the number of poses to keep. The buffer contains the last N poses.

zcResizeTargetPoseBuffer(ZCHandle targetHandle, ZSInt32 capacity);
zcGetTargetPoseBufferCapacity(ZCHandle targetHandle, ZSInt32* capacity);

This following function retrieves the pose buffer.

zcGetTargetPoseBuffer(ZCHandle targetHandle, ZSFloat minDelta, ZSFloat maxDelta, ZCTrackerPose*
buffer, ZSInt32* bufferSize);

 Tracking

zSpace Developer Native Programming Guide 30

Buttons
Primary and secondary tracker targets can have N number of buttons. The number of buttons and state
of each button can be queried with the following functions.

zcGetNumTargetButtons(ZCHandle targetHandle, ZSInt32* numButtons);
zcIsTargetButtonPressed(ZCHandle targetHandle, ZSInt32 buttonId, ZSBool* isButtonPressed);

StylusButtonPolledSample shows how to track the button state using tracker target polling. Doing this
with events is discussed in the “Event Handlers” section on page 32.

LED
The stylus has an LED in the middle of it, and the state of the LED and its color may be changed with the
zSpace SDK. The following functions perform change the state of the LED.

zcSetTargetLedEnabled(ZCHandle targetHandle, ZSBool isLedEnabled);
zcIsTargetLedEnabled(ZCHandle targetHandle, ZSBool* isLedEnabled);

The following functions set and get the color of the LED. Note that the LED cannot represent all possible
specified RGB values, so the system does a closest match to the color specified. See StylusLedSample for
an example of how to set the LED color.

zcSetTargetLedColor(ZCHandle targetHandle, ZSFloat r, ZSFloat g, ZSFloat b);
zcGetTargetLedColor(ZCHandle targetHandle, ZSFloat* r, ZSFloat* g, ZSFloat* b);

 Tracking

zSpace Developer Native Programming Guide 31

Vibration
The zSpace stylus has built-in vibration capabilities. Developers can program the vibration pattern and
control when it starts and stops. The following functions enable and disable vibration and check whether
or not vibration is currently enabled.

zcSetTargetVibrationEnabled(ZCHandle targetHandle, ZSBool isVibrationEnabled);
zcIsTargetVibrationEnabled(ZCHandle targetHandle, ZSBool* isVibrationEnabled);

The vibration is defined as a repeating set of on and off periods. The intensity during the on period may
also be specified; however, some older stylus devices may ignore the intensity parameter and vibrate at
full intensity. The following function is used to start a vibration pattern.

zcStartTargetVibration(ZCHandle targetHandle, ZSFloat onPeriod, ZSFloat offPeriod, ZSInt32
numTimes, ZSFloat intensity);

The on and off periods are specified in seconds.

The intensity is specified as a percentage between 0.0 and 1.0. For example, the following function is set
at an intensity of 0.5 is 50% intensity.

zcIsTargetVibrating(ZCHandle targetHandle, ZSBool* isVibrating);
zcStopTargetVibration(ZCHandle targetHandle);

These last two vibration functions allow the developer to check whether the stylus is currently vibrating
and stops the stylus vibration. To see the vibration functions in use, see StylusVibrateSample.

Tap
Another stylus input feature is a tap event. The stylus can detect when it has been tapped on the surface
of the display. The following function checks if the stylus is currently tapped on the display.

zcIsTargetTapPressed(ZCHandle targetHandle, ZSBool* isTapPressed);

The stylus can also detect a tap hold event, which occurs when the stylus is pressed against the display
for a certain amount of time. This time is called the hold threshold, and it can be adjusted using the
following functions.

zcSetTargetTapHoldThreshold(ZCHandle targetHandle, ZSFloat seconds);
zcGetTargetTapHoldThreshold(ZCHandle targetHandle, ZSFloat* seconds);

The hold threshold is specified in seconds. Example usage of these functions can be found in the
StylusTapPolledSample and StylusTapEventSample.

 Tracking

zSpace Developer Native Programming Guide 32

Event Handlers
All of the stylus features so far have been presented in a polling fashion. The application needs to
continually check the system to detect a change in the state. There are a few stylus features that can
generate asynchronous events. Applications may listen for these events by adding the following event
handlers.

zcAddTrackerEventHandler(ZCHandle targetHandle, ZCTrackerEventType trackerEventType,
ZCTrackerEventHandler trackerEventHandler, const void* userData);
zcRemoveTrackerEventHandler(ZCHandle targetHandle, ZCTrackerEventType trackerEventType,
ZCTrackerEventHandler trackerEventHandler, const void* userData);

These APIs add and remove an event handler to be called when the specified event is generated.

The events with possible event handlers include.

// Stylus Move Event
ZC_TRACKER_EVENT_MOVE // Stylus has moved

// Button Events
ZC_TRACKER_EVENT_BUTTON_PRESS // Stylus button has been pressed
ZC_TRACKER_EVENT_BUTTON_RELEASE // Stylus button has been released

// Tap Events
ZC_TRACKER_EVENT_TAP_PRESS // The stylus was pressed on the display
ZC_TRACKER_EVENT_TAP_RELEASE // The stylus was released from the display
ZC_TRACKER_EVENT_TAP_HOLD // The stylus was pressed for a period of time
ZC_TRACKER_EVENT_TAP_SINGLE // The stylus was pressed/released once
ZC_TRACKER_EVENT_TAP_DOUBLE // The stylus was pressed/released twice

Use the following function signature for the event handler.

typedef void (*ZCTrackerEventHandler)(ZCHandle targetHandle, const ZCTrackerEventData* eventData,
const void* userData);

The tracker event data includes the type of the event, the timestamp, the stylus pose, and the button ID
for button events. The user data is the same as when the event handler was added to the system.

Since the stylus is practically never at rest, the stylus move event has a threshold attribute that can
adjust how much movement in the stylus is needed to generate a stylus move event. Use the following
functions to set and get that threshold.

zcSetTargetMoveEventThresholds(ZCHandle targetHandle, ZSFloat time, ZSFloat distance, ZSFloat
angle);
zcGetTargetMoveEventThresholds(ZCHandle targetHandle, ZSFloat* time, ZSFloat* distance, ZSFloat*
angle);

The time parameter controls how much time, in seconds, needs to pass before a new event is
generated. The distance parameter defines the physical distance movement, in meters, that needs to
occur before a new event is generated. The angle, in degrees, is the amount of rotation on any axis that
needs to change before a move event is generated. Examples of using event handlers for these actions
can be found in StylusButtonEventSample, StylusMoveEventSample, and StylusTapEventSample.

 Tracking

zSpace Developer Native Programming Guide 33

Mouse Emulation
Many applications have existing user interface elements that can interact with the mouse. If you
imagine the virtual ray emanating from the end of the stylus and follow it to where it intersects the
display, this is a natural point for a 2D mouse to exist. Combine that with the three buttons on the
stylus, and you can emulate a mouse with the stylus.

Use the following functions to enable, disable, or check if mouse emulation is currently enabled.

zcSetMouseEmulationEnabled(ZCContext context, ZSBool isEnabled);
zcIsMouseEmulationEnabled(ZCContext context, ZSBool* isEnabled);

Mouse emulation can be generic to any tracking target that generates six degree of freedom poses. The
following functions allow the application to set and get the tracking target used to generate the poses.

zcSetMouseEmulationTarget(ZCContext context, ZCHandle targetHandle);
zcGetMouseEmulationTarget(ZCContext context, ZCHandle* targetHandle);

When the system calculates the point on the display where the virtual ray intersects, it can apply this
data to the mouse in two different ways.

The following functions set and get the current emulation mode.

zcSetMouseEmulationMovementMode(ZCContext context, ZCMouseMovementMode movementMode);
zcGetMouseEmulationMovementMode(ZCContext context, ZCMouseMovementMode* movementMode);

The mouse emulation mode can be either ZC_MOUSE_MOVEMENT_MODE_ABSOLUTE or
ZC_MOUSE_MOVEMENT_MODE_RELATIVE. In absolute mode, the system moves the mouse position to
the exact location of the intersection.

This is very natural, but if the mouse is moving at the same time, there can be cursor interference. If the
mode is relative, the difference between the current position and last position is applied to the cursor
position. This causes no interference with the mouse, but is somewhat less intuitive to the user.

To turn on the mouse only when the stylus is close to the display, use the following functions.

zcSetMouseEmulationMaxDistance(ZCContext context, ZSFloat maxDistance);
zcGetMouseEmulationMaxDistance(ZCContext context, ZSFloat* maxDistance);

The mouse emulation max distance is the maximum distance, perpendicular to the display, where
mouse emulation begins to occur. If the stylus is further than the specified distance, the mouse
emulation does not occur. The distance is in meters.

 Tracking

zSpace Developer Native Programming Guide 34

The application may want the buttons on the stylus to map to mouse buttons in a particular way. The
following functions let the application assign and retrieve which stylus buttons map to which mouse
button.

zcSetMouseEmulationButtonMapping(ZCContext context, ZSInt32 buttonId, ZCMouseButton mouseButton);
zcGetMouseEmulationButtonMapping(ZCContext context, ZSInt32 buttonId, ZCMouseButton*
mouseButton);

The button ID is the stylus button number, and the mouse button may be ZC_MOUSE_BUTTON_LEFT,
ZC_MOUSE_BUTTON_RIGHT, or ZC_MOUSE_BUTTON_CENTER.

For examples of mouse emulation API usage, see MouseEmulationSample.

	zSpace Developer Native Programming Guide
	Before You Begin

	Contents
	1: Introduction and Installation
	Setup Basics and Directories

	2: Buffer Allocation and Stereo Rendering
	Buffer Allocation
	OpenGL
	DirectX

	Stereo Rendering
	Render Loop
	Stereo Render Loop

	3: Initializing and Integrating
	zSpace Context
	Version and Errors
	Display
	Stereo Objects
	Stereo Buffer
	Viewport
	Frustum

	Tracking Basics
	zSpace Stereo Loop
	Grabbing Things with the Stylus
	Cleaning Up

	4: Frustum Attributes
	Frustum Adjustments
	Frustum Attributes
	Auto Stereo
	Portal Mode
	Stereo Comfort
	Focal Point and Zero Parallax
	Head Pose

	5: Coordinate Spaces
	6: Tracking
	Tracker Devices
	Tracker Targets
	Buttons
	LED
	Vibration
	Tap
	Event Handlers
	Mouse Emulation

