
zspace.com Developer’s Guide
 Rev 1.1

zSpace Developer
Unity 3D Programming Guide
Version 1.0

zSpace Developer Unity 3D Programming Guide i

Before You Begin
This zSpace Developer Unity 3D Programming Guide describes how to set up and use the zSpace™ plugin
for Unity 3D. Unity is a flexible and powerful development platform for creating multiplatform 3D and
2D games and interactive experiences. The zSpace plugin for Unity 3D simplifies zSpace application
development.

Audience

This document is intended for experienced Unity application developers who understand the
fundamentals of 3D development.

Scope

This document describes how to access zSpace functions from the Unity system.

Document Organization

This document is divided into four sections:

• System Requirements and Setup

• zSpace Plugin Architecture

• Editor UI Properties and Debug Information

• Core API – zSpace functions in the zSpace.Core.ZCore APIs.

Related Documents

For more information about developing zSpace applications, see:

• zSpace developer resources at http://developer.zspace.com/

• zSpace developer documents at http://developer.zspace.com/docs/ specifically:

o The zSpace Developer Guide – SDK Introduction provides an overview of how to build and
port applications for the zSpace™ platform.

o The zSpace Developer Native Programming Guide describes how to program features using
the zSpace software development kit (SDK).

Copyright © zSpace, Inc. 2016. zSpace is a registered trademark of zSpace, Inc. All other trademarks
are the property of their respective owners.

http://developer.zspace.com/
http://developer.zspace.com/docs/

zSpace Developer Unity 3D Programming Guide ii

Contents
1: System Requirements and Setup ... 1

zSpace Plugin Setup ... 2
2: zSpace Plugin Architecture .. 4

Plugin Objects and Hierarchy ... 4
StereoRig Game Object ... 4
Camera & Game Objects ... 4

Plug-In Definitions .. 6
Camera Callback Events ... 7
Camera Scripts ... 7

3: Editor UI Properties and Debug Information .. 8
zCore Inspector .. 8

General Info ... 8
Debug ... 9
Stereo Rig ... 10
Glasses ... 11
Stylus .. 11
Display ... 12

Simple Stylus Access .. 13
Stylus Events .. 13

Stylus Game Object Manipulation ... 14

4: Core API .. 16
Public Properties .. 16

Debug Visualization ... 16
Plugin Operation .. 16
Stereo Control.. 17
Mouse Features ... 17

zSpace Plugin .. 18
StereoCamera .. 18
Stereo ... 19

Display ... 19
Viewport .. 22
Frustum .. 22
Frustum Attributes & Definitions .. 23
Stereo Comfort .. 23
Portal Mode ... 24

zSpace Developer Unity 3D Programming Guide iii

Focal Point and Zero Parallax .. 24
Camera Control .. 25
Coordinate Systems ... 26

Tracking .. 27
Tracker Devices .. 27
Tracker Targets .. 27
Tracker Target Poses.. 28
Buttons .. 29
LED ... 31
Vibration .. 31
TAP ... 32
Mouse Emulation ... 32
Tracker Events ... 33

zSpace Developer Unity 3D Programming Guide 1

1: System Requirements and
Setup

The zSpace plugin supports both Unity 4 and Unity 5. The plugin also supports both the 32 and 64 bit
Unity editor and players. The plugin currently only supports OpenGL rendering, and needs to allocate
stereo resources, so additional command line options need to be specified for the editor and all
applications created with Unity.

In order to use the zSpace plugin, Unity needs to run using OpenGL. To enable Unity 4 or 5 OpenGL
mode, add the following argument to the Unity editor, or to the command line used to run the resulting
application.

• -force-opengl

The zSpace plugin also needs the editor and applications to allocate resources for stereo. The name of
the command line option has changed over time, as follows:

• Unity 4.1.3: -enable-stereo

• Unity 4.3.0: -enablestereoscopic3d

• Unity 4.5 and later: -enable-stereoscopic3d

Once you have installed Unity 4 or 5, and set up the preceding command line arguments, you can
download the zSpace plugin and get started.

Important Note: A patch is required to support Unity versions before 4.5. Download the patch from
http://developer.zSpace.com.

http://developer.zspace.com/

 System Requirements and Setup

zSpace Developer Unity 3D Programming Guide 2

zSpace Plugin Setup
The zSpace plugin is distributed as a Unity package. When you are ready to import the package, use the
Assets\Import Package\Custom Package… menu item. The included files appear in the following figure.

Figure 1: Importing Package

Click Import to import all the zSpace plugins into the project.

 System Requirements and Setup

zSpace Developer Unity 3D Programming Guide 3

The following directories are part of the import package:

• The Editor directory contains all scripts and icons for the zCore property editor and debug
visualization.

• The Plugins directory contains the 32-bit dll (Plugins\x86) and 64-bit dll (Plugins\x86_64) for
communicating with the zSpace runtime system.

• The Resources directory contains the zCore prefab to be instantiated in the Unity project.

• The Samples directory contains a number of sample Unity scenes to be referenced as examples
of zSpace features throughout this document.

• The Scripts directory contains all of the internal scripts used by the plugin and the external APIs
in the zSpace.Core.ZCore script.

Once the assets are imported, try a test project with simple settings. Create a new project with a cube at
the origin and a scale of (0.1, 0.1, 0.1) as described here.

1. From the Project window open the zSpace\Core\Resources directory.

2. Drag the zCore prefab into the Hierarchy window.

3. Drag your Main Camera object from the Hierarchy window onto the Current Camera property
in the Stereo Rig section of the zCore object.

4. To look at the world origin in the scene, change the main camera position to (0.0, 0.345, -0.222)
and change the X rotation to 60.

5. These values assume real world scale, and a camera looking at the origin. Managing camera
placement and non-real world scales is described later in this document.

6. Press play to test the scene.

You should see a head tracked stereoscopic environment.

Continue to the next section for a description of how the plugin implements this function.

zSpace Developer Unity 3D Programming Guide 4

2: zSpace Plugin Architecture
The Unity developer does not need to modify anything in the zSpace plugin to access all of its
functionality. But it is helpful to understand the architecture and implementation when building
applications. This section explores the plugin architecture.

Plugin Objects and Hierarchy
The zSpace plugin consists of a hierarchy of game objects, cameras, and scripts. At the top of the
hierarchy is the zCore game object. This game object contains all of the editor properties, the ZCore
script that contains all of the main APIs, and the stereo rig hierarchy. This section describes the stereo
rig hierarchy and how it implements zSpace head tracked stereo.

The public functions and editor properties are covered in “Editor UI Properties and debug information”
on page 8.

StereoRig Game Object

The root of the stereo rig hierarchy is the StereoRig game object. This object has two purposes. First, it
contains the same position, orientation, and scale transform from the current camera property of zCore.
This ensures that the stereo rendering is rooted at the camera chosen by the application. The second
purpose of the StereoRig game object is to contain the left, right, and center cameras.

Camera & Game Objects

The three game objects contained by the StereoRig are LeftCamera, RightCamera, and CenterCamera.
Each object contains two things: a Unity Camera object and a StereoCamera script.

Each Camera object is responsible for rendering the scene for its respective eye. The LeftCamera renders
the scene for the left eye and the RightCamera renders the scene for the right eye. The StereoCamera
script is responsible for setting the appropriate buffer state for rendering. The Cameras also get the
appropriate position, orientation, and scale for their respective eye. The CenterCamera does no
rendering, but its position, orientation, and scale get updated to reflect the center eye position. The
main purpose of the CenterCamera is to set up the post stereo rendering state, and serve as an
appropriate camera for any raycast operations.

 zSpace Plugin Architecture

zSpace Developer Unity 3D Programming Guide 5

The following operations occur for every frame in the plugin.

Figure 2: Plugin Operations – This Happens for Every Frame in the Plugin

Update Core SDK

Check Camera Changed

Check Inspector Fields Changed

Update Auto Stereo State

Update Coordinate Space Info

Update Tweens

Update Viewport Info

Update Tracking Info

Update Stereo Rig

Left Camera Pre-Cull

Right Camera Pre-Cull

Center Camera Pre-Cull

Updates the Core SDK
once more to query the
latest tracking and
stereo view/projection
matrix information. This
provides the left, right
and center cameras with
the most
up-to-date head pose
and stereo information.

Update Phase
Progression

End-of-Frame Update Unity

End-of-Frame Update L/R Detect
Re-enables the Center
Camera’s Unity camera
so that its pre-cull
callback is triggered for
the following frame.

Disables its Unity
camera to prevent any
rendering and pre/post-
render callbacks from
being triggered.

Legend:

Monobehaviour.Update

Monobehaviour.OnPreCull

Coroutine (WaitForEndOfFrame)

Update Stereo Info

 zSpace Plugin Architecture

zSpace Developer Unity 3D Programming Guide 6

Plug-In Definitions
Update Core SDK
Updates all underlying Core SDK tracking and stereo related information.

Check Camera Changed
Checks to see if the current monoscopic camera has changed. If so, various camera properties such as
the near clip plane, far clip plane, background color, culling mask, and so on are updated on the stereo
rig’s cameras.

Check Inspector Fields Changed
Checks if any inspector fields have changed—such as IPD, viewer scale, and so on—and pushes updates
down to the Core SDK accordingly.

Update Tweens
Updates any internal tweens that have been queued, such as auto stereo tweens, camera navigation
tweens, and so on.

Update Auto Stereo State
Updates the internal auto stereo state depending on whether or not the head target has been seen by
the tracking cameras.

Update Display Info
Updates any cached display info, such as angle of the zSpace display.

Update Stereo Info
Updates any cached stereo info, such as viewport size, viewport position, view/projection matrices for
each eye, and so on.

Update Coordinate Space Info
Updates all cached coordinate space transformations for the stereo rig’s corresponding stereo viewport.

Update Tracking Info
Updates all cached tracking info, such as poses for each target in each coordinate space.

Left Camera Pre-Cull
Performs another Core SDK update to grab the latest tracking (head pose) and stereo (projection/view
matrices) related information. Updates the stereo rig’s cameras with the latest projection and view
matrices for each eye. Additionally, issues a plugin rendering event to set the underlying render target
to the left back buffer.

Note that the additional SDK Update can cause synchronization issues with any application code trying
to match the movement of the head pose with the stereo rendering. This additional update can be
disabled in the zCore object by unchecking the Minimize Latency checkbox.

 zSpace Plugin Architecture

zSpace Developer Unity 3D Programming Guide 7

Right Camera Pre-Cull
Issues a plugin rendering event to set the underlying render target to the right back buffer.

Center Camera Pre-Cull
Issues a plugin rendering event to disable stereo so that Unity cameras set up to render after the stereo
rig’s right camera can properly render the same image for both eyes, such as 2D UI at zero parallax.
Additionally, disables its own Unity camera to prevent itself from rendering and generating pre/post-
render callbacks.

End-of-Frame Update
Updates any cached Unity info—such as screen width and height—and updates any cached native
window information, such as window position on the virtual desktop.

Update L/R Detect
Handles any pending L/R sync requests.

Camera Callback Events
The zSpace plugin relies on Unity camera callbacks to put the rendering buffers into the proper state for
stereo rendering. Applications may also want to be notified when these events occur. To be notified of
these events after zSpace has done its processing, there are three events available for listening: PreCull,
PreRender, and PostRender.

public delegate void EventHandler(StereoCamera sender);
public event EventHandler PreCull;
public event EventHandler PreRender;
public event EventHandler PostRender;

Applications can use these to be notified of those events after zSpace has done its processing for the
events. These are defined in the StereoCamera script, so applications may listen to any of the three
cameras.

Camera Scripts
The zSpace plugin disables the Current Camera in the zCore object when rendering, so any custom
scripts on that camera are not executed. Applications should add any of these custom scripts (like
Effects) to both the LeftCamera and RightCamera for the scripts to execute correctly in a zSpace stereo
environment.

zSpace Developer Unity 3D Programming Guide 8

3: Editor UI Properties and
Debug Information

The zSpace plugin has a number of features that are accessible from the Unity editor including settable
properties, debug visualizations, and real time data from the tracking system.

zCore Inspector
The primary tool for getting data about zSpace execution is the inspector pane for the zCore object. This
inspector pane has a number of sections, and each of those sections is described in this chapter.

General Info

The General Info section contains the version information for both the zSpace plugin and the runtime
version of the zSpace system.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 9

Debug

The Debug section contains a number of checkboxes which control the debug visualizations that are
visible in the Scene window of the Unity editor. These visualizations update dynamically, and are present
in both edit mode and play mode. Figure 3 shows an example of these visualizations.

Figure 3: Debug Visualizations

The checkboxes are defined as follows:

• Show Labels – Controls whether the text labels of all of the zSpace visualizations are shown.

• Show Viewport (Zero Parallax) – Controls showing the viewport being rendered into. The
viewport is white and is coplanar with the display.

• Show Comfort Zone (Negative Parallax) – Controls showing the stereo comfort zone in front of
the screen. This box is outlined in black.

• Show Comfort Zone (Positive Parallax) –Controls showing the stereo comfort zone behind the
screen. This box is outlined in red.

• Show Display – Controls showing the position and orientation of the physical display. It is
outlined in yellow.

• Show Real-World Up – This green arrow shows the up direction of the real world. It is the
opposite of the gravity vector.

• Show Ground Plane – This outline shows the physical ground plane. The real world up vector is
the normal for this plane. It is outlined in white.

• Show Glasses – Shows the position and orientation of the coordinate system that represents the
center position of the glasses.

• Show Stylus – Shows the position and orientation of the coordinate system that represents the
end position of the stylus.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 10

Stereo Rig
The Stereo Rig section of the inspector controls properties of zSpace stereo viewing. The properties and
functions are described here.

Current Camera
This property contains a reference to the current application camera which is defining the position,
orientation, and scale of the zSpace stereo rendering. Other camera attributes, such as near and far clip
planes are copied from this camera and assigned to the zSpace left and right cameras.

Update Current Camera Transform
A button enabling developers to adjust the Current Camera position and orientation. This button takes
the Viewport World Center position and Viewport World Rotation and assign the correct Current
Camera position and orientation. This makes the Viewport World Center the focal point at the viewport
center and the Viewport World Rotation aligned with the normal vector of the display.

Enable Stereo
This property enables or disables stereo rendering. This reverts back to using the Current Camera for
rendering.

Enable Auto-Transition to Mono
The zSpace plugin can track whether or not the glasses are currently visible. As the glasses transition
from visible to not visible, the plugin can animate from a stereo view to a mono view and back. This
property enables that stereo to mono and back transition. Note that when rendering in this mono
mode, both eyes are still being rendered. They are just rendered with the same frustum.

Copy Current Camera Attributes

This controls whether camera attributes are copied from the current camera to the stereo left and right
cameras. The attributes copied include near clip plane, far clip plane, clear flags, background color, and
culling mask.

Minimize Latency
The zSpace plugin updates all of its data in a Unity Update() method. This includes updating the tracking
data. To minimize latency, the plugin can also do an update in the PreCull() callback for the LeftCamera.
This minimizes the amount of time between reading a new head pose and rendering the scene.

However, if the application uses head pose data for processing in an Update() method, the head pose
that the application uses can be different than the one used for rendering. Sometimes this can cause
some visual jittering issues. If the application runs into these jittering issues, they can turn off the
second update by deselecting this checkbox.

IPD
This is the interpupillary distance that is used by the system for separating the left and right eyes.
Applications should use as close to an accurate value as possible to maximize stereo comfort.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 11

Viewer Scale
By default, zSpace uses a scale of 1.0 to one meter. All head and stylus tracking information is defined
and processed at this scale. It is suggested that applications also model everything in real world scales.
However, it is sometimes not possible for applications to do this. The viewer scale property allows
applications to model in a different scale. This is a direct multiplier to the frustum calculations. Values
greater that 1.0 grow the frustum and distance from the Current Camera to the display, while values less
that one shrink the frustum and distance from the Current Camera to the display.

The scale factor directly maps to real world measurements. For example, by default the display may be
0.521 meters wide. The frustums match these real world measurements. If the viewer scale is set to
10.0, then the effective screen width would be 5.21 meters. Note that this also multiplies the distance
from the Current Camera to the display. If it is usually 0.41 meters away, then a viewer scale of 10.0
would place it 4.1 meters away. Applications can adjust the viewer scale and position of the Current
Camera to match the modeling scale of their application.

Auto Stereo Delay and Duration

These control the delay and duration of the auto stereo to mono transition.

Glasses

The glasses section of the inspector provides real time data about the glasses. Currently that
information includes the pose data for the glasses.

Tracker-Space Pose
The tracker space pose is the current position and orientation of the glasses in tracker space. The
position is at the center of the glasses. The orientation is the X, Y, and Z axis rotations in degrees.

World-Space Pose
The world space pose is the current position and orientation of the glasses in world space. The position
is at the center of the glasses. The orientation is the X, Y, and Z axis rotations in degrees.

Stylus

The stylus section of the inspector contains real time data about the stylus, as well as checkboxes to
enable some stylus features. The stylus features are mouse emulation and mouse auto hide.

Enable Mouse Emulation
This checkbox enables and disables mouse emulation. Many applications have existing user interface
elements that can be interacted with using the mouse. If you imaging the virtual ray emanating from the
end of the stylus and follow it to where it intersects with the display, this is a very natural point for the
2D mouse to exist. Combine that with the three buttons on the stylus, and it is easy to emulate a mouse
with the stylus. That is the function of the mouse emulation feature.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 12

Enable Mouse Auto-Hide
This checkbox enables or disables this feature. By default, the mouse cursor is visible in the zSpace
window. This is sometimes needed when interacting with 2D user interface elements. It can also be
distracting in a stereoscopic environment. The mouse auto hide feature turns off the cursor visibility if a
certain amount of time has passed since the mouse has moved or a mouse button was pressed.

Tracker-Space Pose
The tracker space pose is the current position and orientation of the stylus in the tracker space. The
position is at the end of the stylus. The orientation is the X, Y, and Z axis rotations in degrees.

World-Space Pose
The world space pose is the current position and orientation of the stylus in world space. The position is
at the end of the stylus. The orientation is the X, Y, and Z axis rotations in degrees.

Display

The display section of the inspector shows real time data related to the properties of the displays
attached to the system. Each display shows the following information.

Position
This is the upper left corner position of the display relative to the overall windows virtual desktop. The
position is given in pixels.

Size
The physical size of the display in meters.

Resolution
The current resolution of the display in pixels.

Angle
The current angle of the display. The angles are rotations about the appropriate axis from the horizontal
position measured in degrees. Currently, only the rotation about the X axis is tracked.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 13

Simple Stylus Access
With the editor properties, most Unity applications can get head tracked stereo working. This section
presents some very simple code to get access to the stylus. See “Core API” on page 16 for details about
stylus functions.

Stylus Events

The plugin provides a way to get stylus move and button events. Using the ZCore script, you can add a
listener to stylus move and button press and release events. The following code shows how to do this.

_core = GameObject.FindObjectOfType<ZCore>();
 // Register event handlers.
 _core.TargetMove += HandleMove;
 _core.TargetButtonPress += HandleButtonPress;
 _core.TargetButtonRelease += HandleButtonRelease;

And then, each event callback has the following forms.

private void HandleMove(ZCore sender, ZCore.TrackerEventInfo info)
{
}

private void HandleButtonPress(ZCore sender, ZCore.TrackerButtonEventInfo info)
{
}

private void HandleButtonRelease(ZCore sender, ZCore.TrackerButtonEventInfo info)
{
}

The TrackerEventInfo contains the tracker target that generated the event, the type for the target, and
the world space pose at the time of the event. For button events, the button ID is also included. For
more information, see the “Tracker Events” section on page 33.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 14

Stylus Game Object Manipulation
A very common operation in zSpace applications is to pick up and directly manipulate objects with the
stylus. The StylusObjectManipulationSample scene and script show how to do this, but the high level
details are presented here.

The sample implements a scheme where the object closest to the stylus may be grabbed when the
primary button is pressed. The object must be in the direction the stylus is pointing. While the button is
pressed, the object is attached to the point where the virtual stylus ray intersected the object.

In each frame, check whether or not the stylus is currently grabbing an object. If not, check to see if the
ray from the stylus intersects anything. Note that only objects with a collider are reported as
intersecting the ray.

Core.Pose pose = _core.GetTargetPose(ZCore.TargetType.Primary,ZCore.CoordinateSpace.World);
RaycastHit hit;
 if (Physics.Raycast(pose.Position, pose.Direction, out hit))
 {
 // Update the stylus beam length.
 _stylusBeamLength = hit.distance;

 // If the front stylus button was pressed, initiate a grab.
 if (isButtonPressed && !_wasButtonPressed)
 {
 // Begin the grab.
 this.BeginGrab(hit.collider.gameObject, hit.distance, pose.Position, pose.Rotation);

 _stylusState = StylusState.Grab;
 }
 }

If something is detected when the button is pressed, start the grab. When the grab is started, be sure to
cache the state.

private void BeginGrab(GameObject hitObject, float hitDistance,Vector3 inputPosition, Quaternion
inputRotation)
{
 Vector3 inputEndPosition = inputPosition + (inputRotation * (Vector3.forward * hitDistance));

 // Cache the initial grab state.
 _initialGrabOffset = Quaternion.Inverse(hitObject.transform.localRotation) *
 (hitObject.transform.localPosition - inputEndPosition);
 _initialGrabRotation = Quaternion.Inverse(inputRotation) * hitObject.transform.localRotation;
}

First, compute the world rotation for the object. Then compute the current offset from the end of the
stylus to the end of the object. This is the _initialGrabOffset variable. Maintain this offset as the stylus
moves. Also, be sure to cache the cumulative rotation of the stylus and the object, which is the
_initialGrabRotation variable. This is the starting rotation to use when adding new stylus rotations.

 Editor UI Properties and Debug Information

zSpace Developer Unity 3D Programming Guide 15

When grabbing in the current frame, update the position and orientation of the grabbed object based
upon the current stylus pose.

case StylusState.Grab:
{
 // Update the grab.
 this.UpdateGrab(pose.Position, pose.Rotation);

 // End the grab if the front stylus button was released.
 if (!isButtonPressed && _wasButtonPressed)
 {
 _stylusState = StylusState.Idle;
 }
}
break;

private void UpdateGrab(Vector3 inputPosition, Quaternion inputRotation)
{
 Vector3 inputEndPosition = inputPosition + (inputRotation * (Vector3.forward *
 _initialGrabDistance));

 // Update the grab object's rotation.
 Quaternion objectRotation = inputRotation * _initialGrabRotation;
 _grabObject.transform.rotation = objectRotation;

 // Update the grab object's position.
 Vector3 objectPosition = inputEndPosition + (objectRotation * _initialGrabOffset);
 _grabObject.transform.position = objectPosition;
}

The new rotation of object is the rotation of the current stylus added to the starting rotation. The new
position is the starting offset transformed by the new rotation added to the current end of the stylus.

See the StylusObjectManipulationSample scene and script for the detailed code and logic of this
feature.

zSpace Developer Unity 3D Programming Guide 16

4: Core API
All of the features presented so far can be accessed both programmatically and through the editor.
These features in this section are accessible through the zSpace.Core.ZCore script, which is attached to
the zCore game object. There are many more features available in the script than are available in the
editor. The section describes all the features available in the zSpace.Core.ZCore script.

Public Properties
There are several features that are available as public properties on the ZCore script.

Debug Visualization

The following properties control the debug visualizations.

bool ShowLabels
bool ShowViewport
bool ShowCCZone
bool ShowUCZone
bool ShowDisplay
bool ShowRealWorldUp
bool ShowGroundPlane
bool ShowGlasses
bool ShowStylus

Plugin Operation

Applications can dynamically change the camera on which stereoscopic rendering is being based upon.
To do this, set the following property.

GameObject CurrentCameraObject

The following property can be used to enable or disable the minimize latency property.

bool MinimizeLatency

The following property controls whether or not Current Camera attributes are copied to the stereo
cameras.

bool CopyCurrentCameraAttributes

 Core API

zSpace Developer Unity 3D Programming Guide 17

Stereo Control

Several properties control aspects of stereo rendering.

The following property changes the interpupillary distance used by the system.

float Ipd

The following property changes the viewer scale.

float ViewerScale

The following properties control enabling of auto stereo and adjust the delay before auto stereo
animation starts and the duration of the animation from stereo to mono.

bool EnableAutoStereo
float AutoStereoDelay
float AutoStereoDuration

This following property enables or disables stereo.

bool EnableStereo

Mouse Features

These properties control mouse emulation and mouse auto hide.

To enable or disable either of these features, use the following two properties.

bool EnableMouseEmulation
bool EnableMouseAutoHide

The following property controls how long to wait for no mouse activity before hiding the cursor.

float MouseAutoHideDelay

 Core API

zSpace Developer Unity 3D Programming Guide 18

zSpace Plugin
The rest of this document covers the methods available in the ZCore script and the basic operation of
the plugin. The first few methods allow applications to see if the plugin is initialized and get the version
information for the plugin as well as the zSpace runtime system currently on the system.

bool IsInitialized()
string GetPluginVersion()
string GetRuntimeVersion()

The next methods allow applications to enable or disable, and check the enabled state for either the
stereo rendering or the tracking system. If tracking is disabled, the glasses and the stylus are not
tracked.

void SetStereoEnabled(bool isEnabled)
bool IsStereoEnabled()
void SetTrackingEnabled(bool isEnabled)
bool IsTrackingEnabled()

This method allows applications to get the StereoCamera script for the given eye. The eye can be Left,
Right, or Center.

StereoCamera GetStereoCamera(Eye eye)

StereoCamera
Most applications never need to access StereoCamera script APIs, but there are some public properties
and methods that can be useful for custom rendering systems. Additional Camera Callback Events in the
StereoCamera are presented here.

The following property retrieves the underlying Unity Camera object for this object.

Camera GetCamera()

The following property enables or disables the underlying Unity Camera object.

void SetCameraEnabled(bool isEnabled)

The following properties set the near clip plane, far clip plane, and the depth of the underlying Unity
Camera object.

void SetCameraNearClip(float nearClip)
void SetCameraFarClip(float farClip)
void SetCameraDepth(float depth)

 Core API

zSpace Developer Unity 3D Programming Guide 19

The following methods set the view and projection matrices for the Unity Camera object. Note that the
view matrix needs to be left handed.

void SetViewMatrix(Matrix4x4 viewMatrix)
void SetProjectionMatrix(Matrix4x4 projectionMatrix)

Stereo
Most of the remaining methods in the ZCore script directly map to the native zSpace SDK. Because of
that, a couple of points should be explained. The methods presented here are meant to serve two
purposes. First, they give low level access to all the parameters and functions available in the native SDK
to the Unity application. They are also an initial definition of a C# language binding to the zSpace native
SDK.

In the native SDK, a number of zSpace objects are referenced by a ZCHandle object. In the C# bindings,
this is represented as an IntPtr. This makes sense when using these methods from a generic C#
application. For Unity applications, many of these zSpace low-level objects are created and initialized for
the system. Rather than force the application to carry around these handles, the SDK exposes versions
of the methods that do not take any handle when it would usually require one. In these cases, the
method acts upon the low-level zSpace object that is appropriate for the Unity application. For example,
these two methods are functionally the same:

void SetFrustumAttribute(FrustumAttribute attribute, bool value)
void SetFrustumAttribute(IntPtr frustumHandle, FrustumAttribute attribute, bool value)

The Unity application programmer would use the first version, since the method applies to the frustum
object appropriate for the Unity application. A generic C# application would use the second one. This
document lists both versions for completeness, but Unity applications always use the version of the
method that does not take a handle.

Display

This section describes all of the methods related to the display and its attributes.

The displays are discovered when the zSpace runtime is initialized, but the application can rediscover
this information by using the following function.

void RefreshDisplays()

There are three types of displays that the zSpace runtime can find. They are zSpace, Generic, and
Unknown. All display information can be retrieved for zSpace type displays. Other types of displays may
not return all of the information defined in the zSpace SDK. There are several functions that allow you to
iterate over the discovered displays.

These functions return the number of displays discovered. The second version only returns the number
of displays of the specified type.

 Core API

zSpace Developer Unity 3D Programming Guide 20

int GetNumDisplays()
int GetNumDisplays(DisplayType displayType)

The following function allows you to get the display at the specific position specified. This position is
specified in pixel coordinates in the virtual desktop.

IntPtr GetDisplay(int x, int y)

These functions allow you to get the display at the given index. Note that the index specified in the first
function is relative to all displays. The second version of the function has an index that is relative to only
that type of display.

IntPtr GetDisplay(int index)
IntPtr GetDisplay(DisplayType displayType, int index)

Once you have a display handle, there are many attributes of the display that may be retrieved. The
following function gets the type of the display.

DisplayType GetDisplayType()
DisplayType GetDisplayType(IntPtr displayHandle)

The following function retrieves the number of the display as defined by the set resolution control panel
window.

int GetDisplayNumber()
int GetDisplayNumber(IntPtr displayHandle)

The adapter index is the index of the GPU that is connected to the display.

int GetDisplayAdapterIndex()
int GetDisplayAdapterIndex(IntPtr displayHandle)

The monitor index is the index of the display that is connected to a specific adapter - or GPU. This is
useful in the case where multiple displays are connected to a single GPU.

int GetDisplayMonitorIndex()
int GetDisplayMonitorIndex(IntPtr displayHandle)

A number of string attributes specified by windows are retrievable with the following functions. The
following functions get the attribute string value. Most of these attributes directly map to values defined
by windows, with one that is specific to zSpace is the Model attribute. This specifies the model type for
the zSpace display. It can have a value of 100, 200, 300, or Zvr.

The following functions allow applications to get attributes specific to zSpace displays.

string GetDisplayAttributeString(DisplayAttribute attribute)
string GetDisplayAttributeString(IntPtr displayHandle, DisplayAttribute attribute)

 Core API

zSpace Developer Unity 3D Programming Guide 21

The following functions retrieve the physical size of the display in meters.

Vector2 GetDisplaySize()
Vector2 GetDisplaySize(IntPtr displayHandle)

The following functions retrieve the upper left corner position of the zSpace display in the virtual
desktop.

Vector2 GetDisplayPosition()
Vector2 GetDisplayPosition(IntPtr displayHandle)

The following functions retrieve the pixel resolution of the zSpace display.

Vector2 GetDisplayNativeResolution()
Vector2 GetDisplayNativeResolution(IntPtr displayHandle)

The following functions return the current display angle of the zSpace display.

Vector3 GetDisplayAngle()
Vector3 GetDisplayAngle(IntPtr displayHandle)

The display angle is measured in degrees from a horizontal flat position. Note that except on the zSpace
100, this value is dynamic and can constantly change. Applications that need this information must
retrieve it for every rendered frame. These return the refresh rate of the display.

float GetDisplayVerticalRefreshRate()
float GetDisplayVerticalRefreshRate(IntPtr displayHandle)

The following function shows if display is currently connected to the system.

bool IsDisplayHardwarePresent()
bool IsDisplayHardwarePresent(IntPtr displayHandle)

Another common feature that applications need to determine is where a virtual ray starting at the end
of the stylus, pointing in the direction of the stylus, would intersect the display. The following functions
take all of the zSpace display attributes into account and calculate that intersection point:

DisplayIntersectionInfo IntersectDisplay(Pose pose)
DisplayIntersectionInfo IntersectDisplay(IntPtr displayHandle, Pose pose)

The pose information is in tracker space, and retrieved directly from the tracker system. The information
returned shows whether or not the display was hit, normalized and unnormalized pixel coordinates in
the virtual desktop where the intersection occurred, and the distance (in meters) from the end of the
stylus to the intersection point.

 Core API

zSpace Developer Unity 3D Programming Guide 22

Viewport

The viewport object defines a window on the zSpace display where stereo rendering occurs. The
viewport does no rendering; it serves as a data container ensuring correct calculations. An application
may define as many viewports as it likes, but it needs to use the appropriate data when rendering to
each viewport. The following functions create and destroy the viewport. Unity applications generally do
not use these methods because the plugin handles all of this processing.

IntPtr CreateViewport()
void DestroyViewport(IntPtr viewportHandle)

The only other functions needed for the viewport are to set and get the viewport position and size.

void SetViewportPosition(IntPtr viewportHandle, int x, int y)
Vector2 GetViewportPosition()
Vector2 GetViewportPosition(IntPtr viewportHandle)
void SetViewportSize(IntPtr viewportHandle, int width, int height)
Vector2 GetViewportSize()
Vector2 GetViewportSize(IntPtr viewportHandle)

The application needs to ensure that the rendering window and viewport position and size remain in
sync, or the rendering is not correct. The plugin handles this for Unity applications with no added work.

Frustum

The frustum is the 3D region visible on the screen. It represents the stereo frustum defined by the
current head position and the position and orientation of the zSpace display. There are many attributes
that can be modified in the stereo frustum. The frustum object is automatically created and destroyed
with the viewport object. To get the frustum object, the application uses the following function.

IntPtr GetFrustum(IntPtr viewportHandle)

Most applications run well using the basic setup and logic. Developers can adjust many attributes to
customize the stereo experience for their application. For most attributes, the following get and set
functions may be used to set their values.

void SetFrustumAttribute(FrustumAttribute attribute, float value)
void SetFrustumAttribute(IntPtr frustumHandle, FrustumAttribute attribute, float value)
float GetFrustumAttributeFloat(FrustumAttribute attribute)
float GetFrustumAttributeFloat(IntPtr frustumHandle, FrustumAttribute attribute)
void SetFrustumAttribute(FrustumAttribute attribute, bool value)
void SetFrustumAttribute(IntPtr frustumHandle, FrustumAttribute attribute, bool value)
bool GetFrustumAttributeBool(FrustumAttribute attribute)
bool GetFrustumAttributeBool(IntPtr frustumHandle, FrustumAttribute attribute)

If the attribute is expecting a floating point value, use the float version of the function. If the attribute is
a Boolean, use the bool version of the function. There is no automatic conversion between types. If the
floating point version of the function is used for a Boolean attribute, an error occurs. The same is true
when using the Boolean function on a floating point attribute.

 Core API

zSpace Developer Unity 3D Programming Guide 23

Frustum Attributes & Definitions

The set of attributes that may be retrieved are defined in the FrustumAttribute enum. A description of
each of these attributes follows. The following attributes affect the actual shape of the off axis frustums.
A high level visual description of these attributes can be found in the zSpace Developer Guide – SDK
Introduction.

• Ipd – The physical separation, or inter-pupillary distance, between the eyes in meters. An IPD of
zero (0) effectively disables the stereo since the eyes are assumed to be at the same location.

• ViewerScale – This is a direct multiplier to the frustum calculations. Values greater that 1.0 grow
the frustum and distance from the Current Camera to the display, while values less that one
shrink the frustum and distance from the Current Camera to the display.

• HeadScale – Uniform scale factor applied to the frustum's incoming head pose.

• NearClip – Near clipping plane for the frustum in meters.

• FarClip – Far clipping plane for the frustum in meters.

• GlassesOffset – Distance between the bridge of the glasses and the first nodal point of the eye
in meters.

Stereo Comfort

Many factors combine to contribute to a comfortable stereo viewing experience. Understanding zSpace
Aesthetics describes these aspects. The aesthetics document defines a coupled zone (where stereo is
comfortable), as well as crossed (negative parallax) and uncrossed (positive parallax) zones.

The limits of these zones, as measured in pixel disparity, can be retrieved as frustum attributes, which
are defined here.

• CCLimit – Maximum pixel disparity for crossed images (negative parallax) in the coupled zone.

• UCLimit – Maximum pixel disparity for uncrossed images (positive parallax) in the coupled zone.

• CULimit – Maximum pixel disparity for crossed images (negative parallax) in the uncoupled
zone.

• UULimit – Maximum pixel disparity for uncrossed images (positive parallax) in the uncoupled
zone. As a convenience, applications can also get the physical depth limits for the edges of the
coupled zone with these attributes.

• CCDepth – Maximum depth in meters for negative parallax in the coupled zone.

• UCDepth – Maximum depth in meters for positive parallax in the coupled zone. Also, as a
convenience, there are two utility functions that allow applications to guide some stereo
comfort scenarios.

Bounds GetFrustumCoupledBoundingBox()
Bounds GetFrustumCoupledBoundingBox(IntPtr frustumHandle)

This function returns the bounding box of the coupled zone in camera space. It tells the
application where to put the main focus area of the scene.

http://developer.zspace.com/docs/aesthetics/
http://developer.zspace.com/docs/aesthetics/

 Core API

zSpace Developer Unity 3D Programming Guide 24

Portal Mode

As described in zSpace Developer Guide – SDK Introduction, zSpace implements a fish tank VR style
system. The viewport is the portal into the virtual world. When the viewport is moved on the display, or
the display angle changes, there are two ways to react to these events. You can either move the world
with the viewport or display angle, or you can keep the virtual world static and move the viewport
through the world. Applications can control this behavior by adjusting the portal mode used by the
frustum. Use the following functions to adjust the portal mode values.

void SetFrustumPortalMode(int portalModeFlags)
void SetFrustumPortalMode(IntPtr frustumHandle, int portalModeFlags)
int GetFrustumPortalMode()
int GetFrustumPortalMode(IntPtr frustumHandle)

The portal mode flags are a bitmask representing the portal modes to enable. The flags are as follows:

• None –The scene moves with the viewport and ignores the display angle.

• Angle – The scene's orientation is fixed relative to the physical desktop.

• Position – The scene's position is fixed relative to the center of the display.

• All – All portal modes except "none" are enabled.

If the portal mode is None, the application may still want to simulate display angle changes. By
setting the following frustum attributes, this may be achieved.

o DisplayAngleX

o DisplayAngleY

o DisplayAngleZ

Display angle in degrees about the X, Y, and Z axis.

The actual systems display angle may still be retrieved with GetDisplayAngle. The above frustum
display angle values are only used when portal mode is set to None.

Focal Point and Zero Parallax

A very common operation for applications is to place an object at the zero parallax plane. The zero
parallax plane is a fixed distance away from the Current Camera defined by the application. This can be
thought of as the focal point. This distance is represented in the zSpace plugin by the camera offset
vector. This vector can be gotten or set with the following functions.

void SetFrustumCameraOffset(Vector3 cameraOffset)
void SetFrustumCameraOffset(IntPtr frustumHandle, Vector3 cameraOffset)
Vector3 GetFrustumCameraOffset()
Vector3 GetFrustumCameraOffset(IntPtr frustumHandle)

The length of the camera offset vector is the distance from the applications Current Camera to the
center of the display/viewport. Applications can use this value to know how far to place the virtual

 Core API

zSpace Developer Unity 3D Programming Guide 25

camera relative to the center of the display/viewport. It is possible for the application to modify the
camera offset vector, but it is not recommended.

Camera Control

It is very common for applications to position and orient the Current Camera so that an object is at the
center of the zSpace display. The ZCore script provides a utility function to help with this operation.

Vector3 ComputeCameraPosition(Vector3 focalPoint, Quaternion cameraRotation)

This function returns the world space position where the application should place the Current Camera to
have the given focalPoint at the center of the viewport/display. The given cameraRotation represents
from which direction the Current Camera is oriented towards the focal point object. This is the utility
function used by the Stereo Rig property pane in the Unity Editor.

For more advanced camera control operations, see the CameraNavigationSample script and scene.

Head Pose

By default, the zSpace plugin automatically reads the head pose and applies it to all known frustums. If
tracking is disabled, the application can be used to manually set and get the head pose used by the
frustum to calculate stereo transforms and projections.

void SetFrustumHeadPose(IntPtr frustumHandle, Pose headPose)
Pose GetFrustumHeadPose()
Pose GetFrustumHeadPose(IntPtr frustumHandle)

This is sometimes used to simulate head tracking while debugging.

Transforms

There are two transforms that zSpace calculates that get integrated into the rendering transforms of the
Unity system. Both transforms are unique to each eye and need to be applied appropriately when
rendering an eye.

zSpace takes the head pose, which represents the position and orientation of the center of the glasses,
and calculates the two transforms appropriate for the stereo frustum. The view matrix transform
represents the relative transform which combines the interpupillary distance, offset from the glasses to
the eye, and the transform from camera space to display space. The view transform is retrieved with the
following function:

Matrix4x4 GetFrustumViewMatrix(Eye eye)
Matrix4x4 GetFrustumViewMatrix(IntPtr frustumHandle, Eye eye)

While the zSpace plugin automatically applies the view matrix to the camera, it is sometimes useful for
the application to get the view matrix for other purposes. The second transform is a projection matrix.
The following function is used to get the projection matrix.

 Core API

zSpace Developer Unity 3D Programming Guide 26

Matrix4x4 GetFrustumProjectionMatrix(Eye eye)
Matrix4x4 GetFrustumProjectionMatrix(IntPtr frustumHandle, Eye eye)

The projection matrix simply encodes an off axis projection into a matrix. The matrix in the following
function is an OpenGL style projection matrix. There are two other ways to get the off axis projection
information. The first set of these functions return the frustum bounds information as the standard six
bounds values: left, right, top, bottom, near, and far.

FrustumBounds GetFrustumBounds(Eye eye)
FrustumBounds GetFrustumBounds(IntPtr frustumHandle, Eye eye)
Vector3 GetFrustumEyePosition(Eye eye, CoordinateSpace coordinateSpace)
Vector3 GetFrustumEyePosition(IntPtr frustumHandle, Eye eye, CoordinateSpace coordinateSpace)

The second set of functions allows the application to retrieve the eye position in any coordinate system
they like. You can use this function for real time ray tracing applications. By getting the eye position in
viewport space, and using the viewport position and size, the application can construct the appropriate
starting ray for the rendering.

Coordinate Systems

The coordinate spaces used by zSpace are defined in the zSpace Developer Guide – SDK Introduction. It is
important to understand these coordinate spaces for building experiences for zSpace. The Unity plugin
provides support for the World coordinate space in addition to the standard SDK coordinate systems. It
can do this because it has access to the Current Camera’s camera to world transform. There are two
functions in Core for coordinate space processing.

Matrix4x4 GetCoordinateSpaceTransform(CoordinateSpace a, CoordinateSpace b)
Matrix4x4 GetCoordinateSpaceTransform(IntPtr viewportHandle, CoordinateSpace a, CoordinateSpace
b)

The following function is used to get the coordinate system transform from coordinate space “a” to
coordinate space “b”.

Matrix4x4 TransformMatrix(CoordinateSpace a, CoordinateSpace b, Matrix4x4 matrix)
Matrix4x4 TransformMatrix(IntPtr viewportHandle, CoordinateSpace a, CoordinateSpace b, Matrix4x4
matrix)

 Core API

zSpace Developer Unity 3D Programming Guide 27

Tracking
The tracking system is responsible for supporting all tracking devices, and their tracking targets,
connected to the zSpace system. This section describes tracking devices, tracking targets, and all of the
features that a tracking target may support. The Unity sample scenes show the usage for a number of
these features, and they are identified when appropriate.

Tracker Devices

The tracking system defines a number of tracker devices. Each tracker device known by the system can
be iterated by the application using the tracker device functions.

The following functions allow the application to iterate through all tracker devices, or get a particular
named tracker device.

int GetNumTrackerDevices()
IntPtr GetTrackerDevice(int index)
IntPtr GetTrackerDevice(string deviceName)

The following functions allow an application to enable or disable a tracker device, as well as check if a
tracker device is enabled.

void SetTrackerDeviceEnabled(IntPtr deviceHandle, bool isEnabled)
bool IsTrackerDeviceEnabled(IntPtr deviceHandle)

The following function allows an application to get the name of a tracker device.

string GetTrackerDeviceName(IntPtr deviceHandle)

Tracker Targets

Tracker devices have a number of tracker targets associated with them. A tracker target has a type
associated with it as well. The two tracker target types include Head and Primary. The head target is the
glasses and the primary target is the stylus.

There are several functions that query or set attributes of tracker targets. If a given tracker target does
not support that attribute or feature, the CapabilityNotFoundException is thrown. An example of this is
checking the button state of a head tracker target. To iterate over tracker targets, the following
functions are available.

The following functions get the number of known targets, and the target at the specified index
respectively.

int GetNumTargets(IntPtr deviceHandle)
IntPtr GetTarget(IntPtr deviceHandle, int index)

 Core API

zSpace Developer Unity 3D Programming Guide 28

These get the number of known targets of the given type, as well as the target of that type at the
specified index.

int GetNumTargets(TargetType targetType)
IntPtr GetTarget(TargetType targetType, int index)

This retrieves the target which has the specified name.

IntPtr GetTarget(IntPtr deviceHandle, string targetName)

There are a few attributes of the tracker target that may be retrieved. The following functions get the
name of the tracker target.

string GetTargetName(TargetType targetType)
string GetTargetName(IntPtr targetHandle)

These allow an application to enable or disable a tacker target, as well as get whether or not the target
is currently enabled.

void SetTargetEnabled(TargetType targetType, bool isEnabled)
void SetTargetEnabled(IntPtr targetHandle, bool isEnabled)
bool IsTargetEnabled(TargetType targetType)
bool IsTargetEnabled(IntPtr targetHandle)

The following functions allow the application to know if the target is currently visible by the tracking
system.

bool IsTargetVisible(TargetType targetType)
bool IsTargetVisible(IntPtr targetHandle)

Applications may want to do something unique if a tracker target is not visible. The plugin uses this
feature to implement auto stereo with the head tracker target.

Tracker Target Poses

Tracker targets generate poses. A pose includes a matrix which encodes the position and orientation of
the pose, the position, the rotation, the forward direction, a timestamp when the pose occurred, and
the coordinate space for the pose. An application may ask for the current pose of a tracker target at any
point in time. Note that the plugin Update() method caches the current pose information for all tracker
targets, so multiple calls to retrieve the pose return the same value.

The following functions get the pose in the specified coordinate space.

Pose GetTargetPose(TargetType targetType, CoordinateSpace coordinateSpace)
Pose GetTargetPose(IntPtr targetHandle, CoordinateSpace coordinateSpace)

Certain operations with the stylus can cause the stylus to change its pose as the operation is occurring.
An example of this is when you press the button on the stylus. The act of pressing the button slightly
changes the direction of the stylus from where it was when the press started. The zSpace plugin has a

 Core API

zSpace Developer Unity 3D Programming Guide 29

feature called pose buffering which can help alleviate this problem. When pose buffering is enabled, the
runtime system keeps the last N poses for that target, where N is defined by the capacity of the pose
buffer. The application can then get this pose buffer and process it any way that it wishes.

The following functions enable or disable pose buffering and check to see if it is enabled.

void SetTargetPoseBufferingEnabled(TargetType targetType, bool isPoseBufferingEnabled)
void SetTargetPoseBufferingEnabled(IntPtr targetHandle, bool isPoseBufferingEnabled)
bool IsTargetPoseBufferingEnabled(TargetType targetType)
bool IsTargetPoseBufferingEnabled(IntPtr targetHandle)

The following functions retrieve the pose buffer.

IList<Pose> GetTargetPoseBuffer(TargetType targetType, float minDelta, float maxDelta, int
maxNumPoses)
IList<Pose> GetTargetPoseBuffer(IntPtr targetHandle, float minDelta, float maxDelta, int
maxNumPoses)

The following functions query the capacity of the pose buffer and allow the capacity to be resized. The
capacity is the number of poses to keep. The buffer contains the last N poses.

void ResizeTargetPoseBuffer(TargetType targetType, int capacity)
void ResizeTargetPoseBuffer(IntPtr targetHandle, int capacity)
int GetTargetPoseBufferCapacity(TargetType targetType)
int GetTargetPoseBufferCapacity(IntPtr targetHandle)

Buttons

Primary tracker targets can have N number of buttons. The number of buttons and state of each button
can be queried with the following functions.

int GetNumTargetButtons(TargetType targetType)
int GetNumTargetButtons(IntPtr targetHandle)
bool IsTargetButtonPressed(TargetType targetType, int buttonId)
bool IsTargetButtonPressed(IntPtr targetHandle, int buttonId)

 Core API

zSpace Developer Unity 3D Programming Guide 30

These can be used to track button states in a polling fashion. To do this, keep track of the last button
state and compare it to the current button state. The StylusObjectManipulationSample scene and script
implements this logic. Excerpts from that script are shown here.

private bool _wasButtonPressed = false;
private StylusState _stylusState = StylusState.Idle;

void Update()
{
 bool isButtonPressed = _core.IsTargetButtonPressed(ZCore.TargetType.Primary, 0);

 switch (_stylusState)
 {
 case StylusState.Idle:
 {
 // If the front stylus button was pressed, initiate a grab.
 // if (isButtonPressed && !_wasButtonPressed)
 {
 _stylusState = StylusState.Grab;
 }
 }
 }
 break;

 case StylusState.Grab:
 {
 // End the grab if the front stylus button was released.
 if (!isButtonPressed && _wasButtonPressed)
 {
 _stylusState = StylusState.Idle;
 }
 }
 break;

 default:
 break;
 }
 // Cache state for next frame.
 _wasButtonPressed = isButtonPressed;
 }
}

Each time Update() is called, the code checks the state of the button. If it was not pressed, and it is now
pressed, a button press has happened. If the button was pressed and now it is not, the button release
has occurred. Button states can also be monitored with events. This is described in “Tracker Events.”

 Core API

zSpace Developer Unity 3D Programming Guide 31

LED

The stylus has an LED in the middle of it, and the state of the LED and the color may be changed using
the zSpace ZCore script. The following functions enable or disable the LED as well as check if it is
currently enabled.

void SetTargetLedEnabled(TargetType targetType, bool isLedEnabled)
void SetTargetLedEnabled(IntPtr targetHandle, bool isLedEnabled)
bool IsTargetLedEnabled(TargetType targetType)
bool IsTargetLedEnabled(IntPtr targetHandle)

The following functions set and get the color of the LED. Note that the LED cannot represent all possible
specified RGB values, so the system does a closest match to the color specified. See the
StylusLedSample scene and script for an example of how to set the LED color.

void SetTargetLedColor(TargetType targetType, Color ledColor)
void SetTargetLedColor(IntPtr targetHandle, Color ledColor)
Color GetTargetLedColor(TargetType targetType)
Color GetTargetLedColor(IntPtr targetHandle)

Vibration

The zSpace stylus has vibration capabilities built into it. Developers can program the vibration to be a
pattern as well as control when it starts and stops.

The following functions enable and disable vibration and check whether or not vibration is currently
enabled.

void SetTargetVibrationEnabled(TargetType targetType, bool isVibrationEnabled)
void SetTargetVibrationEnabled(IntPtr targetHandle, bool isVibrationEnabled)
bool IsTargetVibrationEnabled(TargetType targetType)
bool IsTargetVibrationEnabled(IntPtr targetHandle)

Vibration is defined as a repeating set of on and off periods. The intensity during the on period may also
be specified. However, some older stylus devices may ignore the intensity parameter and vibrate at full
intensity.

The following functions are used to start a vibration pattern. The on and off period are specified in
seconds. The intensity is specified as a percentage between 0.0 and 1.0. For example, an intensity of 0.5
is 50% intensity.

void StartTargetVibration(TargetType targetType, float onPeriod, float offPeriod, int numTimes,
float intensity)
void StartTargetVibration(IntPtr targetHandle, float onPeriod, float offPeriod, int numTimes,
float intensity)

 Core API

zSpace Developer Unity 3D Programming Guide 32

These vibration functions allow the developer to check whether the stylus is currently vibrating and
stops the stylus vibration. To see the vibration APIs in use, see the StylusVibrationSample scene and
script.

bool IsTargetVibrating(TargetType targetType)
bool IsTargetVibrating(IntPtr targetHandle)
void StopTargetVibration(TargetType targetType)
void StopTargetVibration(IntPtr targetHandle)

TAP

The stylus has another input feature available to developers. The stylus can detect when it has been
tapped on the surface of the display. The following function is used to check if the stylus is currently
tapped on the display.

bool IsTargetTapPressed(TargetType targetType)
bool IsTargetTapPressed(IntPtr targetHandle)

Mouse Emulation

Many applications have existing user interface elements that can be interacted with the mouse. If you
imaging the virtual ray emanating from the end of the stylus and follow it to where it intersects the
display, this is a very natural point for the 2D mouse to exist. Combine that with the three buttons on
the stylus, and it becomes pretty easy to emulate a mouse with the stylus. That is the function of the
mouse emulation feature. The following two functions are used enable, disable, or check if mouse
emulation is currently enabled.

void SetMouseEmulationEnabled(bool isEnabled)
bool IsMouseEmulationEnabled()

Mouse emulation can be generic to any tracking target that generates six degree of freedom poses. The
following functions allow the application to set and get which tracking target is being used to generate
the poses. The first method allows the application to set the mouse emulation target to be Head or
Primary.

void SetMouseEmulationTarget(TargetType targetType)
void SetMouseEmulationTarget(IntPtr targetHandle)
IntPtr GetMouseEmulationTarget()

When the system calculates the point on the display where the virtual ray intersects, it can apply this
data to the mouse in a couple of different ways. The next functions set and get the current emulation
mode.

void SetMouseEmulationMovementMode(MovementMode movementMode)
MovementMode GetMouseEmulationMovementMode()

 Core API

zSpace Developer Unity 3D Programming Guide 33

The mouse emulation mode can be either Absolute or Relative. In absolute mode, the system moves
the mouse position to the exact location of the intersection. This is very natural, but if the mouse is
moving at the same time, there can be cursor fighting. If the mode is relative, the difference between
the current position and last position is applied to the cursor position. This causes no fighting with the
mouse, but is somewhat less intuitive to the user.

It is also useful to turn on mouse emulation only when the stylus is close to the display. The following
function can control that feature.

void SetMouseEmulationMaxDistance(float maxDistance)
float GetMouseEmulationMaxDistance()

The mouse emulation max distance is the maximum distance, perpendicular to the display, where
mouse emulation occurs. If the stylus is further than the specified distance, mouse emulation does not
happen. The distance is in meters.

Finally, the application may want the buttons on the stylus to map to mouse buttons in a particular way.
These last functions let the application assign and retrieve, which stylus buttons map to which mouse
button.

void SetMouseEmulationButtonMapping(int buttonId, MouseButton mouseButton)
MouseButton GetMouseEmulationButtonMapping(int buttonId)

The button id is the stylus button number, and the mouse button may be Left, Right, or Center.

Tracker Events

All of the tracker target features have been presented in a polling fashion. The application needs to
continually check the state of something to detect a change in the state. There are a few tracking target
features that can also generate asynchronous events. Applications may listen for these events by adding
event handlers. The following method signatures are defined for the listeners of these events.

delegate void EventHandler(ZCore sender);
delegate void TrackerEventHandler(ZCore sender, TrackerEventInfo info);
delegate void TrackerButtonEventHandler(ZCore sender, TrackerButtonEventInfo info);

The following events may be known. The PreUpdate() gets called before the plugin starts its per frame
Update() processing. The PostUpdate() gets called after the plugin finishes its per frame Update()
processing.

event EventHandler PreUpdate;
event EventHandler PostUpdate;

If the tracker target has moved, the TrackerEventInfo contains the tracker target that generated the
event, the type for the target, and the world space pose at the time of the event.

event TrackerEventHandler TargetMove;

 Core API

zSpace Developer Unity 3D Programming Guide 34

To detect if the tracker target has been pressed onto the display, use the following function.

event TrackerEventHandler TargetTapPress;

To detect if the tracker target has been released from the display, use the following function.

event TrackerEventHandler TargetTapRelease;

To detect if the tracker target button has been pressed, use the following function. The
TrackerButtonEventInfo has all the information in the TrackerEventInfo and the button ID of the
button.

event TrackerButtonEventHandler TargetButtonPress;

To detect if the tracker target button has been released, use the following function.

event TrackerButtonEventHandler TargetButtonRelease;

The StylusEventSample script shows examples of these event handlers. In a Start() callback, the code
sets up the event handlers.

void Start()
{
 _core = GameObject.FindObjectOfType<ZCore>();
 if (_core == null)
 {
 Debug.LogError("Unable to find reference to zSpace.Core.ZCore Monobehaviour.");
 this.enabled = false;
 return;
 }

 // Register event handlers.
 _core.TargetMove += HandleMove;
 _core.TargetButtonPress += HandleButtonPress;
 _core.TargetButtonRelease += HandleButtonRelease;
 _core.TargetTapPress += HandleTapPress;
 _core.TargetTapRelease += HandleTapRelease;
}

 Core API

zSpace Developer Unity 3D Programming Guide 35

And then, each event callback has the following forms.

private void HandleMove(ZCore sender, ZCore.TrackerEventInfo info)
{
}

private void HandleButtonPress(ZCore sender, ZCore.TrackerButtonEventInfo info)
{
}

private void HandleButtonRelease(ZCore sender, ZCore.TrackerButtonEventInfo info)
{
}

private void HandleTapPress(ZCore sender, ZCore.TrackerEventInfo info)
{
}

private void HandleTapRelease(ZCore sender, ZCore.TrackerEventInfo info)
{
}

This allows applications to use event notification instead of polling.

	zSpace Developer Unity 3D Programming Guide
	Before You Begin

	Contents
	1: System Requirements and Setup
	zSpace Plugin Setup

	2: zSpace Plugin Architecture
	Plugin Objects and Hierarchy
	StereoRig Game Object
	Camera & Game Objects

	Plug-In Definitions
	Camera Callback Events
	Camera Scripts

	3: Editor UI Properties and Debug Information
	zCore Inspector
	General Info
	Debug
	Stereo Rig
	Glasses
	Stylus
	Display

	Simple Stylus Access
	Stylus Events

	Stylus Game Object Manipulation

	4: Core API
	Public Properties
	Debug Visualization
	Plugin Operation
	Stereo Control
	Mouse Features

	zSpace Plugin
	StereoCamera
	Stereo
	Display
	Viewport
	Frustum
	Frustum Attributes & Definitions
	Stereo Comfort
	Portal Mode
	Focal Point and Zero Parallax
	Camera Control
	Coordinate Systems

	Tracking
	Tracker Devices
	Tracker Targets
	Tracker Target Poses
	Buttons
	LED
	Vibration
	TAP
	Mouse Emulation
	Tracker Events

