
User Interface
Guidelines
Preview Version



zSpace is a registered trademark of zSpace, Inc. All other trademarks are the property of their respective
owners.

Copyright 2014 zSpace, Inc. All rights reserved.

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form or any
means electronic or mechanical, including photocopying and recording for any purpose other than the pur-
chaser’s personal use without the written permission of zSpace, Inc.

zSpace, Inc.
490 DeGuigne Drive, Suite 200
Sunnyvale, CA 94085
(408) 498-4050

2



Contents

Preface 5
WhoShould Read This? 5
Topics in TheseGuidelines 5
Terminology and Conventions 5
SourceMaterial 6

Chapter 1 Introduction to the zSpace Platform 7
Understanding 3D Basics 7
Experiencing 3D in zSpace 8
Stereoscopic Vision in zSpace 9
Motion Parallax in zSpace 10
Proprioception in zSpace 10

Making theMost of zSpace 11
ForMore Information 12

Chapter 2 zSpace User Interface Principles 13
Smart Use of 3D 13
Focus on Content 15
Direct and Natural Interactions 15
Two-Handed Interactions 15
Multi-Modal Interactions 16
Common 2D User Interface Principles 16

Chapter 3 DesignGuidelines 18
User Input 18
Using the Stylus 18
Using theMouse 22
Using the Trackball 23
Using the Keyboard 24
UsingMultiple Input Devices 25

User Interface Layout 25
zSpace Design Philosophy 25
Application-Level vs. Scene 26
Application-Level Controls 26
Left and Right-Handed Layouts 27

Content Layout 28
Content Creation 28

3



Contents

Content Placement 30

Chapter 4 Design Considerations 34
Avoiding Application-Level/Scene Conflicts 34
Temporarily Make In-SceneObjects Translucent 34
Reserve Space for Your Application-Level Controls 35
Temporarily Move the Viewpoint 35

Navigation 35
2D NavigationMetaphors 36
3D NavigationMethods 36

Real World Physics 36
Collision Detection 37
Dynamics Simulation 38
Motion Control 38

Performance and Responsiveness 38
Improving Performance 38
Improving Responsiveness 40

Using Special Effects 40
3D 40
Animation 41
Stylus Feedback 41
Sounds 41

Universal Design 41
Internationalization 41
Left and Right-Handedness 42
Accessibility 42

Glossary 43

4



Preface

WhoShould Read This?
The zSpace User Interface Guidelines are for visual and interaction designers, as well as developers,
product managers, and programmanagers who are responsible for designing an application for the zSpace
system. This can be a new application or a port of an existing application.

Topics in TheseGuidelines
TheseGuidelines include the following chapters:

"Introduction to the zSpace Platform" on page 7: This chapter introduces you to 3D basics, describes
stereoscopic 3D in the zSpace system, and suggests the best uses for the zSpace system.

"zSpace User Interface Principles" on page 13: This chapter provides key design principles for zSpace
applications.

"Design Guidelines" on page 18: This chapter provides guidelines on application-level UI layout, content
layout, and user input.

"Design Considerations" on page 34: This chapter covers topics that are very application-specific, such as
whether or not to include real world physics and how to use special effects. Other topics include navigation,
performance, responsiveness, and universal design.

Terminology and Conventions
TheseGuidelines use bold for new terms and italics for emphasis. New terms will also appear in the
Glossary, so you can look them up later.

The term 3D is often applied to drawings or applications that give the illusion of 3D with perspective and
shading. In theseGuidelines, unless otherwise specified, 3D specifically refers to stereoscopic 3D, as it
is perceived in the real world and in the zSpace display.

TheseGuidelines use the term viewpoint to refer to what the user can see on the display. Another term for
this is the primary camera.

The zSpace UI Toolkit is a Unity-specific SDK that will help you implement many of these design
guidelines. This is currently under development.

5



Preface

The zSpace SDK’s Core libraries include a set of parameters and functions that support the 3D display,
head tracking, and the stylus. These functions are available both in C APIs and Unity-specific APIs.

SourceMaterial
TheseGuidelines are based on existing 2D design guidelines, existing 3D guidelines, and our own exper-
ience with zSpace applications. Specific resources include:

OS X Human Interface Guidelines

Designing with theMind inMind by Jeff Johnson

3D User Interfaces: Theory and Practice by Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, Jr.,
and Ivan Poupyrev

6

https://developer.apple.com/library/mac#documentation/userexperience/Conceptual/AppleHIGuidelines/Intro/Intro.html


Chapter1 Introduction to the zSpace Platform

This chapter covers the following topics:

"Understanding 3D Basics" below

"Experiencing 3D in zSpace" on the next page

"Making theMost of zSpace" on page 11

Understanding 3DBasics
This section provides an overview of how you experience 3D in the real world. This starts with binocular
and stereoscopic vision, with additional depth cues frommotion parallax and proprioception. If this sounds
familiar, you can skip ahead to the next section.

You see things in three dimensions because you see slightly different views from each eye. The ability to
see out of both eyes simultaneously is called binocular vision. Assuming the objects are not too close,
your brain fuses the two views into a single view. Stereoscopic vision is the ability to perceive that single
image in three dimensions.

Figure 1-1 Binocular Vision

7



Chapter 1 Introduction to the zSpace Platform

Another key aspect of stereoscopic vision is that the view changes when youmove your head. As an
example, line up two objects on your desk, such as two coffee cups, one behind the other. Move your head
to the left and right and notice that the back coffee cup appears and disappears as your viewpoint changes.
The difference in perspective from one head position to the next is calledmotion parallax. Another aspect
of motion parallax is that objects in the distance appear to move less than objects closer to you. Without
motion parallax, you can experience cognitive dissonance, leading to fatigue and discomfort.

Figure 1-2 Motion Parallax

We also receive cues about the 3D world through our physical interaction with it. Knowing your body’s
position is called proprioception. Reach out to touch your coffee cups. You reach further for the second
coffee cup. This action reinforces both your depth perception and your understanding of the two objects’
positions relative to each other.

Experiencing 3D in zSpace
This section describes how you experience 3D in the zSpace system. Note that the zSpace display shows
true stereoscopic 3D. This is different from — and better than — other types of 3D representations, such as
3D movies and 2D displays of 3D objects. Even if you have experienced the zSpace system, you should
skim this section for new concepts, in bold.

8



Chapter 1 Introduction to the zSpace Platform

Note: Throughout theseGuidelines, we use both the term stereoscopic 3D and 3D to refer to the
zSpace display of 3D objects. When we discuss traditional 3D in a 2D environment, we will refer to
2D ormonoscopic displays.

Stereoscopic Vision in zSpace
You experience stereoscopic vision in the zSpace display much like in the real world. The zSpace system
displays offset images for the left and right eye. The zSpace system includes passive polarized glasses to
ensure that each eye only sees a single image. Your brain fuses the images together, producing a single
stereoscopic 3D image.

Objects in the zSpace display can appear at different depths. When something appears to be at the exact
depth of the screen, or on the screen’s surface, this is zero parallax. Objects that appear in front of the
screen, projecting towards the viewer, are in negative parallax, while objects that appear behind or inside
the screen are in positive parallax.

Figure 1-3 Negative, Zero, and Positive Parallax

If you have seen a 3D movie, you are familiar with this. Some things in themovie project towards you
(negative parallax) and some appear to be further away than themovie screen (positive parallax). However,
depending on where you were sitting, youmight have noticed some distortion.

9



Chapter 1 Introduction to the zSpace Platform

Unlike 3D movies, viewing the zSpace display is not subject to distortion based on where you are sitting
because it provides motion parallax.

Motion Parallax in zSpace
As discussed in "Understanding 3D Basics" on page 7, motion parallax is a key aspect of how we perceive
3D in the real world. Sensors on the polarized glasses allow the zSpace system to track the position of
your head. When youmove your head, the zSpace system adjusts the viewpoint accordingly. Although the
view changes, the objects still appear stationary. This provides motion parallax, which is critical because
your brain expects the view to change. If it does not, this can lead to visual or mental fatigue.

In addition to providing a stereoscopic 3D display andmotion parallax cues, the zSpace system includes
proprioception cues.

Proprioception in zSpace
The zSpace system lets you directly interact with the 3D scene via a stylus. Knowing your body’s position
(proprioception), combined with manipulating an object in the scene, reinforces your sense of depth. The
additional depth cues make the zSpace display easier to view and comprehend than a 3D movie or a 2D
rendering of 3D objects.

The stylus also offers some distinct advantages over amouse:

The stylus provides six degrees of freedom, while themouse is more limited. In other words, the
stylus can provide the application with x, y, and z coordinates about its location, as well as its angle
(yaw, pitch, and roll).

Figure 1-4 Stylus Movement

A standardmouse can only provide the application with x and y coordinates on a single plane (your
desk or mouse pad). Note that this limitation does not apply to 3D mice such as SpaceNavigator.

10



Chapter 1 Introduction to the zSpace Platform

Figure 1-5 Mouse Movement

The stylus provides a natural interface for selecting objects at different depths. While it is possible
to use themouse in stereoscopic 3D, it is not designed for this purpose.

The stylus provides amore intuitive interface for interacting with 3D objects than themouse does.

Making theMost of zSpace
Some cognitive psychologists believe that interactive, stereoscopic 3D systems, such as the zSpace
system, use the intuitive reasoning system, which is faster than our analytic reasoning system1. Thus, in
certain applications, we canmore quickly perceive and understand data when it is displayed in 3D. This
applies to both real world objects such as parts in a discretemanufacturing process, as well as rep-
resentations of abstract data.

Based on our experiences in the real world, we also have a natural ability to interact with objects in stereo-
scopic 3D. Using the stylus to pick up objects, bring them closer to us, and rotate them to examine them is
an easy extension of using our hands in the sameway.

You can port or create any type of application into the zSpace system and benefit from the ability to display
andmanipulate objects in three dimensions, complete with spatial relationships to each other and to the
viewer. Some applications dependmore heavily on users’ spatial reasoning. Spatial reasoning involves
evaluating the visual details of objects and their relative positions. Example applications include:

Evaluating designs for manufacturability and consumer appeal.

Learning physical layouts, configurations, and functions, possibly in mechanical design or
physiology.

Detecting physical anomalies, such as in disease diagnosis.

1Patterson, R. & Silzars, A. (2009). Immersive stereo displays, intuitive reasoning, and cognitive engin-
eering. Journal of the Society for Information Display, 17, 443-448.

11



Chapter 1 Introduction to the zSpace Platform

The zSpace system offers a significant advantage whenever it is either too expensive or not feasible to
interact with the physical object. Examples include:

Rendering designs of parts and products in stereoscopic 3D before they are physical prototypes can
lead to a significant cost savings.

In themedical and biotechnology areas, 3D models of organs andmolecules preserve information
that is difficult to represent and interpret in 2D.

For large amounts of data, such as produced by scientific experiments or simulations, stereoscopic
3D graphics canmake it easier to interpret the data and discover patterns.

For More Information
Formore information on 3D perception and the implications for the zSpace system, refer to one or both of
the following:

Interactive Stereoscopic Displays white paper

How zSpace Dramatically Improves Creativity and Understanding webinar

12

http://cdn.zspace.com/collateral/white-papers/Whitepaper_Patterson.pdf
http://vimeo.com/53721089


Chapter2 zSpace User Interface Principles

Althoughmost of the common 2D principles for user interfaces apply to zSpace applications, we feel that
zSpace goes beyond a graphical user interface (GUI). It is the next generation in user interfaces — a natural
user interface (NUI). Thus, we have defined five principles that are specific to zSpace:

Smart use of 3D

Focus on content

Direct and natural interactions

Two-handed interactions

Multi-modal interactions

At the end of this section, we will also offer a quick review of common 2D principles for good design. If you
are an experienced UI designer, these will be familiar. If you are new to UI design, there aremany good
resources that you can read.

Smart Use of 3D
Just because you canmake everything have a third dimension does not mean you should. Keep things
simple for the user by making smart use of 3D.

Use 3D when it enhances the user’s experience. Stereoscopic 3D is a powerful tool for showing spatial rela-
tionships. Spatial relationships can play an important role in understanding how complex systems work,
designing and prototyping products, training simulations where it is important to learn a physical layout, and
in evaluating large amounts of data. For example, the user can better understand the parts of the human
heart, with its assorted arteries, when viewing the heart in stereoscopic 3D.

On the other hand, some things are naturally 2D or close to 2D. These include text, menus, and simple
buttons. Show these in 2D. Resist the temptation to display all content and UI controls in stereoscopic 3D.
The following graphics show the same content (the robot) with a 3D user interface and with a 2D user
interface. As you can see in the second example, the content clearly stands out from the user interface.

13



Chapter 2 zSpace User Interface Principles

Figure 2-1 Excessive 3D in the User Interface

Figure 2-2 2D User Interface and 3D Content

14



Chapter 2 zSpace User Interface Principles

For related information on this topic, refer to the following sections:

Making the Most of zSpace

User Interface Layout

Content Layout

Focus on Content
As an extension of the previous principle, the application should highlight the content or scene, usually in
3D. The application-level user interface is simple and unobtrusive. The content and the user interface
should be separate and easily distinguished. The user interface can slide into and out of view as needed.

We strongly recommend that you place the UI controls at zero parallax in 2D for easy selection. Avoid
bright colors, complicated images, and complex interactions.

For more information, refer to these sections:

User Interface Layout

Avoiding Application-Level/Scene Conflicts

Direct and Natural Interactions
From birth, we learn to interact with the world directly, through touch. Our experiences with indirect manip-
ulation, via amouse for example, come later. Thus, physical interaction with our world remains our most
natural way of experiencing it.

The stylus provides a seamless connection between the physical and virtual worlds. Users can directly
manipulate the content, which reinforces spatial learning from other channels, such as proprioception.
Proprioception is an important component in understanding spatial relationships between objects. In
training and simulations, proprioception helps build muscle memory.

For more information on this topic, refer to the following sections:

Proprioception in zSpace

User Input

Two-Handed Interactions
A well-designed application can expand on natural, direct interactions by allowing user input with both
hands. This could be a combination of a stylus and another input device, or gestures. Some applications
give the user fine-grained control over the stylus itself with a few simple keyboard keys. Our experiments
with a trackball and a stylus have shown users can quickly become comfortable using a device in each
hand.

15



Chapter 2 zSpace User Interface Principles

Formore information on this topic, refer to the following sections:

Using Multiple Input Devices

Using the Trackball

Multi-Modal Interactions
Usemultiple input modalities to reinforce the 3D imagery. By adding sound and haptic feedback, you can
create amore realistic experience for your users. Themultiple cues reinforce each other, convincing users
that what they experience is real. For example, an application can show a beating heart, synchronized with
a haptic buzz and the sound of heartbeats. All of these come together and reinforce that the user is inter-
acting with living tissue.

The above example shows the value that multi-modal interactions can add to application’s content. You
can also integratemulti-modal feedback with the UI elements in an application. For example, a subtle
vibration of the stylus can help the user with object selection.

You can further increase the impact of audio by using spatial audio, where the sound seems to emanate
from a particular location in the scene. Themultiple streams of input — visual, haptic, audio — reinforce each
other and create amore powerful experience.

For more information on this topic, refer to the following sections:

Stylus Controls

Using Special Effects

Common 2DUser Interface Principles
These basic 2D UI principles will apply to the 2D application-level controls. Many of them are also valid for
your 3D application content:

Use familiar metaphors, such as the traditional file folder for a directory.

Take advantage of the user’s mental model or experience with the tasks and objects in the real
world.

Follow the See and Point paradigm, where users select an object (a noun), then select an action (a
verb).

Give the user control over the application’s behavior instead of taking action for the user.

Provide immediate feedback when a user initiates an action. If necessary, give an indication how
long the action will take to complete.

Be consistent in using the same terminology and user interface throughout your application.

16



Chapter 2 zSpace User Interface Principles

Offer aWYSIWYG (what you see is what you get) display, so that text, images, and video will
appear on screen as they would in final output.

Encourage exploration by “forgiving” mistakes through the use of Undo and returning to prior set-
tings. Warn users if actions could have negative consequences, such as deleting a file.

Give users a sense of stability through a consistent user interface. For example, instead of hiding
menu choices that are not available, use gray text. Save user preferences from one session to the
next so that application behaves consistently.

Add aesthetic integrity to your application by keeping the user interface simple and uncluttered. Fol-
low good design principles and use UI controls as expected.

For amore in-depth discussion of 2D design principles, you can refer to theWindows or Mac OS design
guidelines.

17



Chapter3DesignGuidelines

The design guidelines in this chapter cover a variety of topics about both designing both the 2D and 3D
parts of your application. Refer to the following sections for details:

"User Input" below

"User Interface Layout" on page 25

"Content Layout" on page 28

User Input
The zSpace system comes with a stylus that is designed specifically for user input in a stereoscopic 3D
environment. It canmove in three dimensions, point at different angles, and is not constrained to zero
parallax. In general, this is amore natural way to interact with the zSpace display than amouse, which is
designed for a 2D interface. However, if you are porting an application that relies onmouse and keyboard
input, youmay consider having the stylus emulate themouse or having themouse emulate the stylus.

The zSpace system supports any input device that adheres to the USB 2.x specification. This section
covers design guidelines for the stylus, themouse, the trackball, the keyboard, as well as usingmultiple
input devices. Note that in all cases, you want to avoid disruption by forcing the user to switch input
devices.

Note: Regardless of the input device, your user interface shouldminimize the number of clicks or
keystrokes required to complete an operation.

For more information on this topic, you can watch the zCon 2013 presentation on input devices. Note
that this presentation is more technical and it includes demonstrations. However, the presentation does not
focus on design guidelines.

Using the Stylus
There are several different aspects of the stylus to consider:

Stylus controls

Visual representation in the display

Mouse emulation

18

http://vimeo.com/66412984


Chapter 3 Design Guidelines

Stylus Controls

The stylus includes a forward center button and two left/right buttons. By default, the primary button is the
forward button, with the right and left buttons defined as secondary and tertiary. However, just like on the
mouse, the user can remap the buttons as needed.

Figure 3-1 The zSpace Stylus

We recommend your application use the buttons as follows:

Primary button: select objects and UI controls

Secondary button: open context menus

Tertiary button: perform other application-specific functions

Thesemappings match the default mouse behavior, which will make it easier for your users to learn the
stylus buttons’ functions.

Note: All functionality should also be available to the user via a tool palette or menu options. While
expert users might use all three stylus buttons and keyboard shortcuts, you should provide an
easier method for novice users.

If your application does not use all three buttons, youmust decide how to handle the user pressing a non-
functional or unmapped button. If nothing occurs, users are apt to think the stylus is broken. For a very
simple application that uses only one button, you canmap all three buttons to the same function. Altern-
atively, you can give feedback, such as a brief stylus vibration, if the user presses a non-functional button.

19



Chapter 3 Design Guidelines

The stylus includes two forms of feedback: vibration and an LED light. Consider whether using the stylus
vibration will enhance your application’s usability or increase the user’s experience of immersion in the
application. For example, a brief stylus vibration can give a subtle cue when the stylus hovers over an
object.

The LED light can be set to red, green, blue, or a combination. For example, if you set all three colors to on,
the LED displays a white light. Note that themeaning of the light may not be clear to your user, so you
should not use it as the only form of feedback. For example, you can combine the LED light with vibration
or visual cues in the application.

Visual Representat ion of the Stylus

Much like amouse pointer represents themouse location, it is important to show the stylus location as
well. However, this is more complicated than a 2D mouse pointer because objects in the zSpace display
can appear at different depths. Your application needs to display a visual representation of the physical
stylus. The zSpace UI Toolkit will provide two examples of a virtual stylus for you.

The virtual stylus includes a beam and a tip.

The beam extends from the physical stylus along the stylus’ orientation. The beam can be a fixed
length or an adaptive beam that truncates when it intersects an object.

The tip indicates the point of interaction with objects.

One of your most important decisions will be whether to use a fixed-length beam or an adaptive beam. Both
have their advantages and disadvantages.

Fixed-Length Beam: The fixed beam’s length is constant. If it touches an object closer than the end of the
beam, it does not interact with that object. This allows the user to pass the beam through one object and
select one that is partly hidden. You can expand the power of this beam by giving the user explicit control
over the beam length and size of the stylus tip.

With a fixed-length beam, you can implement volumetric selection. Volumetric selection lets the user drag
to create a 3D volume for selectingmultiple objects.

Use the fixed-length beam when the user requires precise control and the ability to select small objects in a
crowded environment. This visual representation is also better for applications in which the user must
create content. However, this stylus beam does have a longer learning curve.

Adaptive Beam: The beam’s length is infinite until it intersects an object, then it adapts and truncates to
the distance to the object. This allows easier object selection, as long as precise control is not required. It
is also easier to select objects that are deep in the scene. The adaptive beam is a good choice for appli-
cations where the user is selecting andmanipulating existing content. This stylus is also easier to use for
new or infrequent zSpace users.

You can include both a fixed-length beam and adaptive beam virtual stylus in your application. Some tools
work best with one type over another. For example, the camera path tool requires a fixed-length beam

20



Chapter 3 Design Guidelines

because the user must place points at a specific location. On the other hand, the selection tool can work
with either an adaptive or fixed-length beam. You can also let the user switch between the fixed beam and
adaptive beam virtual stylus.

Regardless of the stylus beam, you shouldmaintain alignment between the physical stylus and its visual
representation in the display, so that they appear as one. Additionally, you shouldmaintain a consistent
scale of movement between the physical stylus and its visual representation. Given a 1:1 scale between
the stylus and its representation, if the user moves the physical stylus 10 cm in the x, y, and z axes, the
visual representation shouldmove 10 cm along the same axes. The same is true for rotation of the physical
stylus.

Note: Depending on your application needs, youmight design a different representation of the
stylus than a tip and beam. For example, as described below, you can use a standardmouse
pointer.

Mouse Emulat ion

If you are porting an existing application into the zSpace system, your applicationmost likely includes a lot
of mouse interaction. You can define the stylus to emulatemouse behavior so that users do not have to
switch between the stylus and themouse. For mouse emulation, we distinguish between your existing, or
legacy, 2D UI controls and new zSpace-specific 2D UI controls. The legacy UI controls are standard
Windows controls. Users who are already familiar with your 2D version of the application usually use a
mouse to select these controls.

We provide the following guidelines for using the stylus to emulate themouse:

Over the scene, represent the stylus as a beam with a tip.

Over the zSpace 2D UI controls, represent the stylus as a beam with a tip.

Over legacy 2D UI controls, display the stylus as amouse pointer instead.

In cases where the legacy 2D UI is next to the scene or the zSpace 2D UI, use distance and stylus
orientation to distinguish between stylus behavior andmouse emulation. Display a beam when the
stylus is held at a distance from the screen, changing to amouse pointer when the stylus moves
closer.

For mouse emulation, we recommend that youmap the stylus buttons to the native OS settings for the
mouse.

Note: If your application supports both the stylus andmouse as input devices, it should display only
one pointer at a time. For example, when the user switches from themouse to the stylus, remove
themouse pointer from the display, so that only the stylus beam appears.

21



Chapter 3 Design Guidelines

Using the Mouse
Although we believe the stylus is a natural tool for zSpace, themousemay be better in some situations.
For example, if you are porting an existing application into the zSpace system and your users have a lot of
muscle memory associated with themouse, it might make sense for themouse to emulate the stylus.

The key challenge for the stylus emulation is changing depths with the objects in the scene. Themouse
pointer should always be on top of objects, which can appear at any depth. This section discusses two
specific use cases for stylus emulation:

Avogadro is an application that models molecular structures. Users primarily select and view con-
tent.

Autodesk Maya® is a 3D animation application. Users need to both select and create content.

In both cases, zSpace has created a plug-in that displays content in a stereoscopic 3D viewport. The
mouse pointer is displayed in stereoscopic 3D within the viewport and appears as a standard 2D mouse
over the rest of the user interface. Neither implementation displays a stylus beam, but both add a z coordin-
ate to help themouse pointer move at different depths. The differences in the implementations are based
on the application requirements.

Avogadro’s users do not require a great deal of precision. Thus, the implementation is conceptually like an
adaptive beam that truncates to hover over the nearest object. The angle of the beam, if it was displayed,
would be drawn from the user’s head through themouse’s x, y coordinates until it intersects an object. In
other words, head tracking provides the orientation of the invisible beam, which supplies the z coordinate.
Themouse pointer automatically rises and falls as it encounters objects at different depths.

Note: In the Avogadro implementation, the z coordinate is passive. The implementation uses the z
coordinate for drawing the pointer, but it uses only the x,y coordinates for object selection.

Maya’s users require more precision for drawing. A second concern is that Maya has an extensive 2D user
interface that surrounds the viewport. When themouse interacts with objects in the stereoscopic 3D
viewport, the “stylus beam”must be contained within that 3D volume. In other words, it should not acci-
dentally hover over the surrounding 2D UI. For this reason, the invisible beam is at a fixed perpendicular
angle to the screen. This implementation is conceptually similar to a fixed-length beam. Users can change
the length of the beam as needed, so they aremanually setting the z coordinate.

Note: Using head tracking for the z coordinate would introduce some drifting based on small head
movements. This would not meet Maya’s requirements for precise control.

Recall that in "Using the Stylus" on page 18, we noted that an adaptive beam is easier to use, but less
precise. The fixed-length beam is more precise.

22



Chapter 3 Design Guidelines

In general, we recommend your stylus emulation perform in the following ways:

Display themouse pointer in stereo when it is within the 3D viewport. This gives themouse pointer
the appearance of depth. When it is over a 2D UI, display a standardmouse pointer.

Display themouse pointer at zero parallax when it enters the scene, until it touches an object. At
that point, move themouse pointer to the plane of the object. Keep it on that plane until it touches
another object on a different plane.

Keep themouse pointer’s size constant as it moves on different planes. Normally, an object’s size
changes with its depth in the scene. However, if youmake themouse pointer smaller as it moves
deeper into the scene, it will be harder to use.

Using the Trackball
In our experience, the trackball can be very powerful as a secondary input device. The user holds the stylus
in the dominant hand and the trackball in the non-dominant hand. For example, in the Avogadro application,
a user can select an atom with the stylus and use the trackball to rotate themolecular structure around the
selected atom. Although the rotation is possible with the stylus alone, the wrist does not move as freely as
the trackball.

We have also tested the trackball in other applications. The trackball works well in these situations:

While one hand clicks and holds an object with the stylus, the other hand rotates the object with the
trackball.

When no object is selected, the trackball rotates the entire scene.

If the trackball includes a scroll wheel, the scroll wheel can support a zoom feature.

In general, for ease of use, scale the rotation to be 1:1 with the trackball motion. For example, if the user
rotates the trackball 180 degrees from right to left, then the object or scene should also rotate 180 degrees
from right to left. Similarly, rotating the trackball from front to back should produce the same amount of
rotation in the same direction.

Note that some applications will work better with a different scale. For example, if precision is required, try
scaling the object rotation at 1:10 with trackball motion, where 10 degrees of trackball rotation causes only
1 degree of object rotation. User testing will help you determine the appropriate scale.

There are some technical issues concerning trackballs. Windows reports a trackball device as amouse. If
the user has both amouse and a trackball, both devices can control themouse pointer. To avoid these
conflicts, we recommend the following:

When the trackball is in use, the application hides themouse pointer.

When themouse is in use, the application displays themouse pointer.

23



Chapter 3 Design Guidelines

The application offers a keyboard shortcut to switch from the trackball to themouse.

When the trackball is active, we do not recommend using a click of the standardmouse to switch
devices. In our experience, it is too easy to accidentally reach for themouse when you intend to use
the trackball.

For more general guidelines about using two devices at the same time, refer to "UsingMultiple Input
Devices" on the next page.

Using the Keyboard
Your application should provide standardWindows keyboard shortcuts. Based on the types of behavior
that are likely in a zSpace application, we suggest the following:

Key Meaning

F1, Shift+F1 Display help. At this time, we do not offer specific guidelines on
how you should implement help.

F5 Refresh the active window in the user interface.

Tab Move between the application control bar, palette, and inspector
when one of these has focus. Refer to "Application-Level Con-
trols" on page 26 for more information on these controls.

Ctrl+A Select all. Whether this applies to in-scene objects or a UI control
depends on the current focus.

Ctrl+C, Ctrl+Insert Copy the selected object or item.

Ctrl+X Cut the selected object or item.

Ctrl+V, Shift+Insert Paste the last object or item from the clipboard.

Ctrl+Y, Alt+Shift+Backspace Redo

Ctrl+Z, Alt+Backspace Undo

Ctrl+P Print

Ctrl+S Save

Shift+F10 Display the context menu for the selected object or item.

Alt+F4 Close the application.

24



Chapter 3 Design Guidelines

Note: Your applicationmay not support all of the above operations.

We also recommend keyboard shortcuts for options in your 2D UI and any 3D controls you implement.

You can also provide keyboard shortcuts to change the stylus behavior. You could give users control over
the length of a fixed stylus beam or provide shortcuts to changemodes, such as from reposition to rotate.

Using Multiple Input Devices
As stated in the beginning of this section, you shouldminimize the user’s need to switch between input
devices. However, depending on your application’s complexity, youmay choose to support two input
devices, one in each hand. The input devices could be used at the same time.

Where possible, it is desirable to offer both novice (stylus only) and advanced (stylus + keyboard) options.
For example, novice users might explicitly control the behavior of the stylus with amenu option, while
advanced users might combine the stylus with keyboard options. This is very similar to how most users
start with 2D applications, using themouse initially, then gradually using keyboard shortcuts for frequent
tasks. You can leverage common uses of the Shift and Ctrl keys such as multiple selection and fixed
scaling. The Enter button often has an “execute” meaning.

You can also combine the stylus with a trackball, as described in "Using the Trackball" on page 23.

Yves Guiard proposed the following guidelines1 for two-handed tasks:

The dominant hand uses one device for fine-grained control, while the non-dominant hand uses
another device for gross manipulation.

The device in the non-dominant hand controls the viewpoint.

The device in the dominant hand starts themanipulation.

User Interface Layout
This section discusses the zSpace Design Philosophy and the different types of application-level controls.

zSpace Design Philosophy
Webelieve some things are better displayed in 2D, based both on complexity and the users’ past exper-
iences with 2D interfaces. For example, it is far easier to read text in 2D than in stereoscopic 3D. Users will

1Guiard, Y. (1987). Symmetric Division of Labor in Human Skilled Bimanual Action: The Kinematic Chain
as aModel. The Journal of Motor Behavior 19(4): 486-517.

25



Chapter 3 Design Guidelines

bemore efficient with user interface controls in 2D because the physical interaction is less complex in two
dimensions.

However, you will be designing your application’s scenes and objects in stereoscopic 3D. In many cases,
it is far more powerful to model the real world and leverage users’ real world experience in 3D. This taps into
our ability to understand certain things better in 3D. For example, we canmore readily experience and
understand spatial relationships and physical constraints in 3D.

The underlying philosophy for designing zSpace applications is to use 2D where it offers more value than
3D. Use 3D where it offers advantages over 2D.

Application-Level vs. Scene
As we think about a user interface in the zSpace system, first we distinguish between application-level
controls and the application’s scene or content.

Application-level controls are top-level functions such as exit, file management, and navigation. For your
application-level controls, your application can benefit from the advantages of 2D, placed at zero parallax:

Text is easier to read in 2D.

Viewing comfort is maximized at zero parallax.

UI controls are easier to select at zero parallax.

Note: When we refer to 2D for application-level controls, wemean that your application-level
controls should not be full stereoscopic 3D objects with interaction onmultiple faces. However,
your application icons can have a subtle 3D appearance and still be easy for users to select.

The application-level controls are the equivalent of a HUD (head-up display). Like a HUD in a computer
game, the controls may either be permanently displayed or temporarily displayed as needed.

The scene is the core of your application, containing your 3D content. For your scene, your application
should take advantage of the strengths of the zSpace system: a realistic stereoscopic 3D display,
complete with head tracking and direct manipulation via a stylus.

Application-Level Controls
The zSpace Design Philosophy defines three types of application-level controls: an application control bar,
palette, and inspector.

The application control bar is the application’s main control and contains all of the application-level
commands. It should contain commands for file operations, preferences, and exiting the application. The
application control bar sits at the bottom of the screen. For an example of this placement, refer to the
zSpace Concepts application.

26



Chapter 3 Design Guidelines

The palette contains stylus tools, or modes, such as selection, scale, and the camera path tool. The
palette appears on the right side of the screen.

The inspector shows the details of an object. The inspector’s contents updates as the user changes an
object in the scene. The inspector also appears on the right side of the screen.

All applications require the application control bar. We believe that most applications will also need a
palette, but only some applications will require an inspector.

Note: Whether or not your application needs a palette or inspector, you can also use context menus
in your user interface. A later version of these guidelines will include specific recommendations.

Figure 3-2 Layout of Application-Level Controls

The above figure shows the placement of the application-level controls. It is not intended to show the look
and feel of these controls.

Place the application control bar, palette, and inspector at zero parallax. As noted earlier, your application
can either display these types of controls permanently, show them as needed, or allow the user to slide
them in and out of place.

Left and Right-Handed Layouts
The suggested layout of the palette and inspector are best for right-handed users. With the controls on the
right, the user can reach themmore easily and the controls are not blocked by the position of the user’s

27



Chapter 3 Design Guidelines

hand and arm. We believe this layout should be configurable for left-handed users so that the palette and
inspector are placed on the left instead. Make this configuration available via a Preferences option on the
application control bar. When the user selects the left-handed layout, offer the user the option to update the
stylus settings on the zSpace Control Panel as well.

Content Layout
This section provides design guidelines for creating scenes, which contain your application’s content. The
content is separate from the application-level UI controls. For guidelines on UI controls, refer to "User
Interface Layout" on page 25.

Content Creation
Content creation is a complex process, starting with a 3D modeling application and ending with themodel
displayed by the rendering engine you choose. If you do not have experience with 3D modeling, we
recommend you hire someone or allow for time to learn.

Generally themodeling process will include the following steps:

1. Build — or purchase — a 3D model.

2. Addmaterials to themodel. You can create or purchase these.

3. Apply or adjust shaders to get the desired surface quality.

There aremany different kinds of models, such as polygons and parametric solid models. The zSpace
system does not restrict the type of 3D model you use.

Next, depending on the rendering engine you use, youmay need to convert themodel from one format to
another. For example, Unity requires polygonmodels. However, you could create a different type of model
in onemodeling application and then convert them to polygons in another. You can use any rendering
engine that is zSpace-enabled.

Usually you will set lighting within the rendering engine.

Finally, you will probably need tomake adjustments to your model for optimum results in your rendering
engine. Some rendering engines support certain changes in their editors. In some cases, you will need to
adjust themodel in themodeling application.

The following sections describe some things that contribute to your model’s effectiveness:

"Model Performance" on the next page

"Ghosting and Flickering" on the next page

"Realism" on page 30

28



Chapter 3 Design Guidelines

Model Performance

Your scene will need to refresh fast enough for users to experience smooth animation and acceptable head
tracking. We have found that a 60 frames per second (FPS), 30 FPS per eye, is theminimum for com-
fortable viewing. For long sessions, we recommend higher rates. Because the zSpacemonitor refreshes at
120 Hz, themaximum possible FPS is 120, or 60 per eye.

Your application’s desired FPS may vary, depending on your application requirements. You will need to
balance the desired resolution against requirements for smooth animation.

Note: Althoughmodel complexity can affect your application’s refresh rate, it is not the only factor.
For more information, refer to "Improving Performance" on page 38.

Ghost ing and Flickering

In the zSpace display, the scene is constantly redrawn based on the position of the viewer’s head, with
separate images for the left and right eye. If each eye sees an imagemeant for the other eye, this can
cause ghost images. In other words, the user sees a faint duplicate image.

To eliminate ghost images, follow these guidelines:

Avoid using strongly contrasting colors, hues, values, and patterns.

Use textures and variable brightness instead of solid colors.

Try to match the average color value of the objects to the average color value of the background.

Patterns next to solid-colored objects may have ghost images. In addition, evenly-lit geometric patterns are
also subject to ghosting. Patterns with soft transitions work best.

Note that the left and right-eye images at zero parallax are rendered on top of each other, so ghosting
cannot occur. Although you can usemore contrast at zero parallax, ghosting can occur on objects in front
of or behind the object at zero parallax. In addition, if the user moves the object out of zero parallax, ghost
images will appear if it is in high contrast.

Sometimes you cannot modify amodel to reduce ghosting. For example, your applicationmay be show-
casing products; you do not have the freedom to adjust colors and textures. In such cases, you will have to
adjust the background to decrease ghost images.

In addition to ghost images, users may also experience flickering. Thin lines have the potential to cause
flickering, whether in text, objects, or a border. As the user moves his head or the object moves, pixels on
the linemay not be displayed. This is more noticeable with high-contrast objects. The guidelines for
avoiding ghost images will also eliminate flickering.

29



Chapter 3 Design Guidelines

Realism

One of the strengths of a stereoscopic 3D environment is that objects canmore closely match the real
world. However, you should also consider the user and the task. Do not attempt to recreate everything
photo-realistically just because you can. In some cases, a cartoon or a pencil sketchmay be a better altern-
ative. Consider the following examples:

Photorealism would be important in an application for medical students. An anatomy game for chil-
dren could easily use cartoons instead.

Faces rendered in stereoscopic 3D may look artificial or trigger the “uncanny valley” effect.1 A
sketch of a well-known person can be easily recognized and avoid the risk of appearing “fake.”

A sketch can represent a storyboard or concept that is still in the planning stages.

When realism is your goal, make sure your models have the same properties that they do in the real world.
For example, reflective objects should appear to reflect light, while glass should appear transparent.
Include light sources and shading.

Note: You need to balance realism against performance. Some aspects of realism, such as reflec-
tions, can be costly in terms of computational load.

Be selective about how much detail and how many objects to place in the scene. If something is not
important for the task, do not show it. Display the key items in the level of detail that makes sense for your
application and your user. For example, whether to hide or show the wiring in a house schematic depends
on the purpose of the schematic.

Content Placement
Content placement refers to both the depth in which you place objects and how you scale them. Refer to
the following sections for details:

"Depth" below

"World Scale" on page 33

Depth

Recall from "Experiencing 3D in zSpace" on page 8 that objects in positive parallax appear behind the
screen or inside themonitor, while objects in negative parallax appear in front of it. Within those regions,

1The uncanny valley hypothesis refers to viewers feeling revulsion when a human likeness is almost, but not per-
fectly, realistic. A less realistic representation evokes a more comfortable response. This has been observed in
robotics and 3D animation.

30



Chapter 3 Design Guidelines

there is an optimum range for comfortable viewing. When objects are too close, the user has trouble
focusing and will see double images. While viewing distant objects is not uncomfortable, at some point
depth is no longer discernable. Stereoscopic vision is a primary cue for objects that are relatively close to
the viewer, becoming less of a factor as distance increases.

Figure 3-3 Viewing Comfort

Clipping planes control the field of view’s depth as follows:

The near clipping plane defines how close to the user objects may appear. If the user attempts to
move an object closer, it is not rendered or is only partly rendered.

The far clipping plane defines how far from the user objects may appear. Beyond the far clipping
plane, objects are not rendered or only partly rendered.

31



Chapter 3 Design Guidelines

Figure 3-4 Clipping Planes

You can adjust the clipping planes with the zSpace SDK’s Core libraries.1 Follow these guidelines for
setting your clipping planes:

Set the near clipping plane to greater than half the interpupillary distance, which is the distance
between the viewer's pupils. By default, the interpupillary distance is 0.06m.

Make the ratio between the far and near clipping planes as small as possible. This will improve the
numerical precision in the rendering algorithms. When the ratio is very high, such as 1000:0.001,
overlapping objects can appear in the wrong order. A more typical ratio is 100:0.1.

Set the clipping planes far enough apart to accommodate all the relevant content in the scene.

For example, in the zSpace Experience application, the near clipping plane is 0.1 and the far clipping plane
is 1000.

Generally, the space defined by the clipping planes should be at least as large as viewers’ comfort zone.
Note that the comfort zone decreases as the viewpoint moves, so that focusing on near and distant objects
can become uncomfortable for the viewer.

For more information on stereo comfort, refer to Understanding zSpace Aesthetics

1zSpace’s Core libraries are available in both a native zSpace SDK and in a Unity-specific SDK.

32

http://docs.zspace.com/aesthetics/index.html


Chapter 3 Design Guidelines

As you design your application, youmust decide where to place objects in your scene. Generally, people
aremore comfortable with positive parallax than negative parallax. In addition to viewing comfort, consider
the user’s physical interaction with objects in the scene. It is harder to manipulate objects with the stylus if
you place them too far away.

World Scale

Sometimes an application requires a greater range of distances than you can comfortably view within the
clipping planes. To resolve this problem, you can adjust the world scale. As an example, if your world is
100 times larger than the zSpace display, use a world scale of 100. In that case, objects that appear to be
500m away are actually renderedmuch closer and remain easily viewed. For example, if you have a large
model of the solar system, you would need a large world scale. The actual world scale would depend on the
size of your models.

On the other hand, if your application needs to display microscopic detail, you would set a smaller world
scale so objects appear larger than in the real world. Choosing the correct world scale depends on what you
aremodeling. When it is feasible, we recommend using a 1:1 world scale to provide themost realism.

Note: In addition to adjusting the world scale, youmay also need to adjust the viewpoint to produce
the desired effect.

33



Chapter4Design Considerations

This chapter covers a variety of topics that you should consider when designing your application. In
general, we do not offer concrete guidelines because the correct approach depends on your specific applica-
tion. Refer to the following sections for details:

"Avoiding Application-Level/Scene Conflicts" below

"Navigation" on the next page

"Real World Physics" on page 36

"Using Special Effects" on page 40

"Performance and Responsiveness" on page 38

"Universal Design" on page 41

Avoiding Application-Level/Scene Conflicts
A key challenge will be preventing your application controls — the control bar, palette, and inspector — from
interfering with your in-scene objects. Similarly, objects in the scene should not prevent the user from inter-
acting with the application controls. This can be a difficult problem to solve, and the best solution will
depend on your specific application.

This section offers three suggested solutions:

1. Temporarily make the in-scene objects translucent

2. Reserve space for your application-level controls

3. Temporarily move the viewpoint

In all three approaches, it is important that the user knows that any changes to the scene are temporary.

The following subsections discuss each approach.

Temporarily Make In-Scene Objects Translucent
When you need to display an application control, you can temporarily change the visibility of any object that
prevents the user from seeing the control. Instead of hiding the object, gradually change it to translucent.
The gradual change prevents a blinking effect as the stylus moves around the scene.

The advantage to this approach is that it maximizes your 3D space.

34



Chapter 4 Design Considerations

Reserve Space for Your Application-Level Controls
In this approach, you set aside a portion of the display for the application control bar and, if necessary, the
palette and inspector.

The advantages are that it is a relatively simple solution and it provides the user with a sense of stability as
the scene is not affected. You can either set aside a 2D space at zero parallax or a complete 3D volume.

A 2D spacemay be sufficient if the user has complete control over the placement of objects in the
scene. If an object is above or below the control bar, the user canmove it to access the control bar.
zSpace used this approach in its zSpace Concepts demo application.

A 3D volume ensures that in-scene objects can never obstruct the control bar and that the control
bar cannot hide parts of the scene. However, this leaves you with a smaller area for your scene.

Do not use this approach if it restricts the viewpoint somuch that your application cannot display all of your
scene.

Temporarily Move the Viewpoint
In this approach, you gradually move the viewpoint so that all objects are in positive parallax, leaving room
for the user interface. Youmay need to scale objects so the entire scene remains visible. When the UI
controls are no longer required, your application gradually resets the viewpoint back to its previous setting.

Your applicationmust clearly notify the user that the objects themselves are not beingmodified. One way
to do that is with a letterbox or a frame that moves with the content.

Moving the viewpoint can be very effective if animated well. The animation should be smooth and slow
enough that the user can follow themovement easily.

This approachmaximizes the area available for the scene until the user interface is needed.

Navigation
Almost all applications require navigating from one place to another. This could be navigation within the
scene or navigation between different scenes. Good navigation tells users their current location and lets
them gowhere they want to.

Unless your application displays all its contents initially, the applicationmust convey its navigationmodel
to the user. Even in applications with a single scene, the user may still need to navigate within the scene.
Except in games that include discovering hidden clues, navigationmust be easily understood. You can use
tooltips or callouts to label navigation techniques, giving the user the option to hide them when no longer
needed.

35



Chapter 4 Design Considerations

2D Navigation Metaphors
Borrowing from 2D user interfaces, you can use these familiar navigation techniques:

Wizards move you through the steps to perform a task.

Breadcrumbs indicate where you are within an application and usually provide a way back to a prior
location.

Hyperlinks provide a way to jump from one location to another.

Trees or outlines provide a structured view of all the hyperlinks available, such as the Table of Con-
tents in this document.

3D Navigation Methods
The zSpace Experience demo application includes a portal, or teleportation, as ameans of navigation. This
is the equivalent of a hyperlink that lets you jump from one scene to another.

Another commonmethod of navigation is travel, in which the user changes the viewpoint throughmotion.
Computer games includemany examples of flying and walking. For navigation by flying or walking, you will
need to decide both how to control movement and how to restrict movement. Controllingmovement
includes considerations such as direction and speed. You can restrict movement to specific paths or allow
movement in any direction within a restricted space.

As you design your application, think about your user’s goals and knowledge. Does the user want to
explore and gather information while moving from one location to another? Or is the goal to navigate to the
destination as quickly as possible? Does the user know the desired destination and how to get there? Is a
searchmechanism required? These questions are particularly applicable if your application has large
scenes or multiple scenes.

RealWorld Physics
When you design your application, you need to decide whether to implement real world physics and to what
extent. Incorporating physics into your application can include:

Collision detection

Rigid-body and soft-body dynamics

Fluid dynamics

Motion control

For a quick visual introduction to different types of physics, you can view a video on this Wikipedia page:
Physics Engine.

36

http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Physics_engine


Chapter 4 Design Considerations

Note: Implementing physics can be expensive in terms of computational load. You will need to
balance the value of implementing physics with the application’s performance.

This section describes different categories of physics that youmight include in your application.

Collision Detection
The purpose of collision detection is to determine if objects might touch or intersect each other. For some
applications, this can be critical. You can define bounding boxes or spheres as collisionmeshes for your
models. The collisionmesh defines the boundaries at which objects may not intersect.

Figure 4-1 Collision Meshes

If the user’s tasks do not require precision, you can define a simple bounding box or sphere. For example,
you could define gross boundaries for a chair in a furniture layout application. However, for amechanical
assembly, the objects probably require more precise boundaries.

You can see an example of collision detection in the zSpace Concepts demo application. When the
Physics option is on, objects cannot intersect one another. You can also turn the option off, which allows
objects to move through one another.

37



Chapter 4 Design Considerations

Dynamics Simulation
You can use dynamics simulation to define whether your objects are rigid, soft, or fluid. If two rigid objects
collide, neither would change shape. If youmodel a soft object, such as foam, then its shape should
change as a result of impact. Modeling water, complete with fluid dynamics, is evenmore complex.

If your application requires dynamics simulation, determine how much accuracy is necessary. For
example, consider the behavior of dropped objects (pianos, anvils) in a cartoon. Contrast that with the
importance of modeling physical behavior in a simulation for building demolition. In the latter case,
precision is important to accurately model the results.

Motion Control
Motion control defines how an object moves. Gravity is one aspect of motion control. As mentioned earlier,
the zSpace Concepts application includes a Physics option. When Physics is off, gravity is disabled and
objects hover in mid-air, making them easy to inspect. When enabled, the objects suddenly drop to the
floor.

If inspecting objects is a key aspect of your application, implementing gravity would actually make your
application harder to use. On the other hand, if your application simulates car crashes, you would
implement gravity, as well as other aspects of an object’s behavior: whether it bounces, how it rolls, and so
on.

Performance and Responsiveness
First it is important to distinguish between performance and responsiveness:

Performance refers to the system performance, measured by CPU speed, frames per second, and
so on.

Responsiveness affects the user’s perception about performance. This measures response time, or
how quickly the application responds to a user’s actions, not how quickly the application completes
the actions.

Improving Performance
This section defines performance based on frames per second (FPS). A low FPS rate can reduce or
eliminate the benefits of head tracking. When the scene refreshes too slowly for the user’s head
movements, this is worse than no head tracking. As stated in "Model Performance" on page 29, we
recommend your scene refresh at 60 FPS (30 FPS per eye) at aminimum. To improve performance, you
need to consider both the computational complexity of your scene and your application logic.

38



Chapter 4 Design Considerations

Checking the Scene’s Impact

Your models’ polygon count, the resolution of the textures, and other rendering information, such as
shaders, contribute to the computational load. If your application’s performance is slow, we recommend
you follow these steps to identify the problem:

1. Check lighting first, disabling various options to see if any single change has a large impact:

The number of lights

The type of lights such as directional and point lights

Lighting effects such as shadows and bounced lights

2. Check the shaders, disabling various options to see if any have a large impact:

Transparency

Specular

Refraction

Reflection

Although you cannot disable a diffuse shader, you can replace the associated 2D texturemapwith a
single color.

3. Check the textures’ size. Larger or higher resolution textures can slow performance.

4. Take a look at the polygon count.

5. Finally, consider whether you simply have toomany objects in the scene.

If performance problems persist, you can try to improve performance by using lower level-of-detail (LOD)
models or trying lower resolution textures. You can also allow make allowances for lower quality graphics
cards by dynamically choosing lower LOD models. In some cases, it makes sense to let the user choose
the settings for rendering quality.

Checking the Applicat ion Logic

For application logic, make sure your foreground or rendering thread consistently has low enough latency to
allow the renderer to maintain a high frame rate. Avoid heavy processing in these threads. Because stereo-
scopic 3D applications have to render the whole scene twice, they require muchmore graphics processing
power than 2D applications. Any optimizations you canmake to your application will help reduce the load
on the graphics processor.

39



Chapter 4 Design Considerations

Improving Responsiveness
Regardless of the absolute system performance, you can improve users’ perceptions by providing
immediate feedback.

For your UI controls, you can display immediate feedback by changing the appearance of pushed
buttons and selectedmenu items.

For the in-scene objects, you can change the appearance of objects when they are selected to indic-
ate the user’s action. Youmight display the wireframe or highlight the object in someway. This is a
familiar convention from 2D user interfaces.

Users must receive immediate feedback about physical actions (button pushes, object selection) within
0.1 second. Otherwise, they will believe the action failed and try again.

In zSpace applications, responding quickly to the user’s stylus movements is critical. It is more important
to show an object’s movements as the stylus moves than to show the complete object. You can try dis-
playing wireframes or lower LOD models for faster rendering during the user’s actions.

If an operation takes longer than a second to complete, display a busy cursor. This acknowledges the
user’s request, so he or she does not try again. For operations that take longer than 10 seconds to
complete, display a dialog box or progress bar.

Using Special Effects
Use special effects when they are appropriate to the task and the audience. This section offers some
guidelines about using 3D outside the scene, animation, the stylus’ feedback, and sounds.

3D
In general, reserve stereoscopic 3D for your scene and objects in your scene. Use 2D for UI controls and
text. Note that you can give your UI controls a subtle 3D appearance, but for easy use, do not make them
true stereoscopic 3D objects that support user interaction onmultiple faces.

If you are tempted to replace a control with a 3D object, consider whether it enhances your application or
whether a familiar 2D control would work as well. For example, you could display a 2D slider bar or a place
lights spatially to control lighting. But should you?

If the lighting is an integral part of your application and your scene is uncluttered, lighting objects
might enhance your scene.

If the lighting is a rarely used setting, use a 2D control that is only present when needed.

40



Chapter 4 Design Considerations

Animation
Use animation when it is necessary to illustrate a process or notify a user of key information. Examples
include:

Drawing attention to an object moving on or off screen

Familiar 2D metaphors, such as animating a file transfer

Stylus Feedback
The stylus can provide feedback through vibration. For example, you can use a very brief stylus vibration to
tell the user that an object is hovered or selected. The user may interpret this feedback similar to touching
an object in the real world, even if he or she does not consciously notice the vibration. In our experience,
although users often do not notice the vibration, they aremore likely to be confused when the vibration is
absent.

Other aspects of the stylus are covered in "Using the Stylus" on page 18.

Sounds
If your application uses sounds with notifications or alerts, give the user control over whether or not they
occur.

Your applicationmay also use sounds as part of the scene. In this case, make sure the audio is syn-
chronized with the 3D experience. Otherwise the user may experience cue conflicts, where audible infor-
mation does not match the visual and physical feedback.

Universal Design
Ideally, design your application for the widest possible audience by considering the following issues:

Internationalization

Left vs. right-handedness

Accessibility

Internationalization
We recommend you design your application so it can be easily modified for different locales. Follow these
guidelines:

Make it easy for developers localizing your application to replace the text associated with messages
and UI controls.

41



Chapter 4 Design Considerations

If applicable, make references to weights andmeasures configurable so they can bemetric, U.S.-
based, or British-based.

Try to avoid culture-specific references in your scene.

Be aware that color has specific meanings in other countries. For example, Western cultures often
associate white with purity, but many Asian cultures associate white with mourning.

Left and Right-Handedness
The zSpace stylus is configurable so that users can change the right and left buttons’ mapping. For more
information, refer to "Using the Stylus" on page 18.

We also recommendmaking the placement of application-level controls configurable for the left or right side
of the screen. For more information, refer to "Left and Right-Handed Layouts" on page 27.

Accessibility
For users with disabilities, careful planning can improve your application’s accessibility. For example:

Enable keyboard shortcuts andmouse options for users with limited physical mobility.

Add audio options for visually impaired users.

Use additional cues besides color for colorblind users.

The zSpace system provides additional possibilities for creating applications designed for users with dis-
abilities. For example, stylus vibrationmight help a visually impaired user “see” that the stylus is inter-
secting an object. The user can then select the object and bring it closer to examine it. Alternatively, you
could display an enlarged view of the object in a PIP (Picture in Picture) window.

When you design for colorblind users, youmust be careful that your solutions do not cause ghost images,
as described in "Ghosting and Flickering" on page 29. Depending on your application, you can try using
different depths, in addition to color, to distinguish between different categories of information.

42



Glossary

Binocular vision

Binocular vision refers to seeing out of both eyes at the same time. You will see slightly different
views out of your left and right eyes, which your brain fuses the images into a single three dimen-
sional view. The ability to see the two images as a single image with depth is called stereoscopic
vision.

Haptic feedback

Haptic feedback refers to providing physical feedback to the user. The zSpace stylus can vibrate
to provide haptic feedback.

Interpupillary distance

The interpupillary distance is the distance between the pupils of your eyes. Setting this distance
to 0 in your application would disable the stereoscopic 3D effect.

Kinesthesia

This is similar to proprioception and refers to awareness of the position andmovement of your
body parts.

Motion parallax

When youmove your head, objects remain stationary, but your view shifts. Objects that were hid-
denmay come into view and other objects may become hidden. Additionally, objects in the dis-
tance appear to move less than objects closer to you. This is a cue that reinforces depth
perception.

Negative parallax

Negative parallax refers to the space that projects from the surface of the zSpacemonitor towards
the viewer.

43



Glossary

Polarization

Polarization is a property of light waves, which can oscillate in more than one way. The zSpace
System uses polarized glasses to filter the light that reaches each eye. When zSpace displays
two offset images, one for each eye, the glasses ensure that each eye sees only a single image,
which the brain fuses into one combined image.

Positive parallax

Positive parallax refers to the space that appears inside or behind themonitor. Objects displayed
in positive parallax appear to be behind the surface of the zSpacemonitor.

Proprioception

This is the sense of your body's position. When combined with physical movement, it provides
additional depth cues for 3D perception.

Stereoscopic 3D

Stereoscopic 3D refers to displaying objects in three dimensions, with depth and perspective.
This is different from displaying a 3D object in two dimensions, such as a cube in a drawing appli-
cation.

Zero parallax

Zero parallax refers to displaying something at the surface of the zSpacemonitor.

44


	Preface
	Who Should Read This?
	Topics in These Guidelines
	Terminology and Conventions
	Source Material

	Chapter 1 Introduction to the zSpace Platform
	Understanding 3D Basics
	Experiencing 3D in zSpace
	Stereoscopic Vision in zSpace
	Motion Parallax in zSpace
	Proprioception in zSpace

	Making the Most of zSpace
	For More Information

	Chapter 2 zSpace User Interface Principles
	Smart Use of 3D
	Focus on Content
	Direct and Natural Interactions
	Two-Handed Interactions
	Multi-Modal Interactions
	Common 2D User Interface Principles

	Chapter 3 Design Guidelines
	User Input
	Using the Stylus
	Using the Mouse
	Using the Trackball
	Using the Keyboard
	Using Multiple Input Devices

	User Interface Layout
	zSpace Design Philosophy
	Application-Level vs. Scene
	Application-Level Controls
	Left and Right-Handed Layouts

	Content Layout
	Content Creation
	Content Placement


	Chapter 4 Design Considerations
	Avoiding Application-Level/Scene Conflicts
	Temporarily Make In-Scene Objects Translucent
	Reserve Space for Your Application-Level Controls
	Temporarily Move the Viewpoint

	Navigation
	2D Navigation Metaphors
	3D Navigation Methods

	Real World Physics
	Collision Detection
	Dynamics Simulation
	Motion Control

	Performance and Responsiveness
	Improving Performance
	Improving Responsiveness

	Using Special Effects
	3D
	Animation
	Stylus Feedback
	Sounds

	Universal Design
	Internationalization
	Left and Right-Handedness
	Accessibility


	Glossary

